Advertisement

Quantum Fisher Information of a Two-Qubit System in Non-Markovian Environment

  • Yao-Hua HuEmail author
  • Yong-Gang Tan
  • Hai-Feng Yang
  • Lei-Ming Cao
Article

Abstract

Considering a two-qubit system interacting with a common bosonic reservoir, this paper investigates the quantum Fisher information dynamics in the Markovian and non-Markovian environments, and focuses on the estimation of the phase and weight parameters in the non-Markovian environments. The results show that the quantum Fisher information for the estimation of the weight parameter does not change with time. For the estimation of the phase parameter, whether in the Markovian or non-Markovian environments, the time evolution of the quantum Fisher information can ultimately arrive at stabilization. In addition, the maximum value of the quantum Fisher information for the phase estimation in the non-Markovian environment is larger than that in the Markovian regime, which indicates that the estimation precision of the phase parameter in the non-Markovian regime is higher.

Keywords

Quantum Fisher information Non-Markovian environment Phase parameter Weight parameter 

Notes

Acknowledgments

This work has been financially supported by NSFC (Grant Nos. 11804141, U1204616, 11504157), the Training Plan of Young Key Teachers in Universities of Henan Province (No. 2018GGJS129) and the Fundamental Research of The Education Department of Henan Province of China (Grant Nos. 16A140013, 16A140015).

References

  1. 1.
    Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)zbMATHGoogle Scholar
  2. 2.
    Li, N.: Luo. S.: Phys. Rev. A. 88, 014301 (2013)ADSGoogle Scholar
  3. 3.
    Watanabe, Y., Sagawa, T., Ueda, M.: Phys. Rev. A. 84, 042121 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Lu, X.M., Wang, X., Sun, C.P.: Phys. Rev. A. 82, 042103 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Phys. Rev. A. 93, 012307 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Phys. Rev. Lett. 110, 050402 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Ren, Y.K., Wang, X.L., Zeng, H.S.: Quantum Inf. Process. 17, 5 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Abdel-Khalek, S., Abd-Elmougod, G.A., El-Sayed, M.A.: Appl. Math. Inf. Sci. 11, 677 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Faizi, E., Mahmoudi, P.: Quantum Inf. Process. 17, 303 (2018)ADSCrossRefGoogle Scholar
  10. 10.
    Jin, Y.: Ann. Phys.367, 212 (2016)Google Scholar
  11. 11.
    Šafránek, D.: Phys. Rev. A. 97, 042322 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Rajabpour, M.A.: Phys. Rev. D. 96, 126007 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Metwally, N.: Laser Phys. Lett. 14, 045202 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Tan, K.C., Choi, S., Kwon, H., Jeong, H.: Phys. Rev. A. 97, 052304 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Yao, Y., Xiao, X., Ge, L., Wang, X., Sun, C.: Phys. Rev. A. 89, 042336 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    He, J., Ding, Z.Y., Ye, L.: Phys. A. 457, 598 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Akbari-Kourbolagh, Y., Azhdargalam, M.: Phys. Rev. A. 99, 012304 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    Mirkhalaf, S.S., Smerzi, A.: Phys. Rev. A. 95, 022302 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Erol, V.: Int. J. Theor. Phys.56, 3202 (2017)Google Scholar
  20. 20.
    Liao, X.P., Zhou, X., Fang, M.F.: Int. J. Theor. Phys. 57, 909 (2018)CrossRefGoogle Scholar
  21. 21.
    Lin, D., Liu, Y., Zou, H.M.: Chin. Phys. B. 27, 0110303 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Rev. Mod. Phys. 88, 021002 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Xiao, X., Fang, M.F., Li, Y.L., Zeng, K., Wu, C.: J. Phys. B. 42, 235502 (2009)Google Scholar
  24. 24.
    Mu, Q., Li, H., Huang, X., Zhao, X.: Opt. Commun. 426, 70 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Xiong, H.N., Lo, P.Y., Zhang, W.M., Feng, D.H., Nori, F.: Sci. Rep. 5, 13353 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Kishore, T., Anirban, P., Subhashish, B.: Quantum Inf. Process. 16, 115 (2017)CrossRefGoogle Scholar
  27. 27.
    Sun, Z., Liu, J., Ma, J., Wang, X.: Sci. Rep. 5, 8444 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Li, Y.L., Xiao, X., Yao, Y.: Phys. Rev. A. 91, 052105 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, Y., Fang, M., Kang, G., Zhou, Q.: Quantum Inf. Process. 17, 62 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Berrada, K.: Phys. Rev. A. 88, 035806 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    Maniscalco, S., Francica, F., Zaffino, R.L., Gullo, N.L., Plastina, F.: Phys. Rev. Lett. 100, 090503 (2008)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Spohn, H.: Rev. Mod. Phys. 52, 569 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett.72, 3439 (1994)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Helstrom, C.W.: J. Stat. Phys. 1, 231 (1969)ADSCrossRefGoogle Scholar
  35. 35.
    Liu, J., Jing, X., Wang, X.: Phys. Rev. A. 88, 042316 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Zhang, Y.M., Li, X.W., Yang, W., Jin, G.R.: Phys. Rev. A. 88, 043832 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics and Electronic Information CollegeLuoyang Normal CollegeLuoyangPeople’s Republic of China

Personalised recommendations