Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4278–4292 | Cite as

Classification of Classical Non-Gaussian Noises with Respect to Their Detrimental Effects on the Evolution of Entanglement Using a System of Three-Qubit as Probe

  • Lionel Tenemeza KenfackEmail author
  • Martin Tchoffo
  • Lukong Cornelius Fai
Article

Abstract

A system of three non-interacting qubits is used as a quantum probe to classify three classical non-Gaussian noises namely, the static noise (SN), colored noise (pink and brown spectrum) and random telegraph noise (RTN), according to their detrimental effects on the evolution of entanglement of the latter. The probe system is initially prepared in the GHZ state and coupled to the noises in independent environments. Seven configurations for the qubit-noise coupling (QNC) are considered. To estimate the destructive influence of each kind of noise, the tripartite negativity is employed to compare the evolution of entanglement in these QNC configurations to each other with the same noise parameters. It is shown that the evolution of entanglement is drastically impacted by the QNC configuration considered as well as the properties of the environmental noises and that the SN is more detrimental to the survival of entanglement than the RTN and colored noise, regardless of the Markov or non-Markov character of the RTN and the spectrum of the colored noise. On the other hand, it is shown that pink noise is more fatal to the system than the RTN and that the situation is totally reversed in the case of brown noise. Finally, it is demonstrated that these noises, in descending order of destructive influence, can be classified as follows: SN > pink noise > RTN > brown noise.

Keywords

Classical noise Non-Gaussian noise Entanglement Qubit 

Notes

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Schroedinger: . Die Naturwissenschaften 23, 807–8012 (1935)ADSGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: . Rev. Mod. Phys. 81, 865 (2009)ADSGoogle Scholar
  3. 3.
    Ekert, A.K.: . Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetGoogle Scholar
  4. 4.
    Gisin, N., et al.: . Rev. Mod. Phys. 74, 145 (2002)ADSGoogle Scholar
  5. 5.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, England (2000)zbMATHGoogle Scholar
  6. 6.
    Bennett, C.H.: . Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetGoogle Scholar
  7. 7.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: . Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetGoogle Scholar
  8. 8.
    Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: . Phys. Rev. A 80, 062324 (2009)ADSGoogle Scholar
  9. 9.
    Paz, J.P., Roncaglia, A.J.: . Phys. Rev. Lett. 100, 220401 (2008)ADSGoogle Scholar
  10. 10.
    Helm, J., Strunz, W.T.: . Phys. Rev. A 80, 042108 (2009)ADSGoogle Scholar
  11. 11.
    Helm, J., Strunz, W.T., Rietzler, S., Wuringer, L.E.: . Phys. Rev. A 83, 042103 (2011)ADSGoogle Scholar
  12. 12.
    Witzel, W.M., Young, K., Sarma, S.D.: . Phys. Rev. B 90, 115431 (2014)ADSGoogle Scholar
  13. 13.
    Strunz, W.T., Diosi, L., Gisin, N.: . Phys. Rev. Lett. 82, 1801 (1999)ADSMathSciNetGoogle Scholar
  14. 14.
    Stockburger, J.T., Grabert, H.: . Phys. Rev. Lett. 88, 170407 (2002)ADSGoogle Scholar
  15. 15.
    Crow, D., Joynt, R.: . Phys. Rev. A 89, 042123 (2014)ADSGoogle Scholar
  16. 16.
    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: . Phys. Rev. A 87, 052328 (2013)ADSGoogle Scholar
  17. 17.
    Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone, P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to 1/f α noise. Proc. 22nd Int. Conf. Noise Fluct. (ICNF) 323, 6578952 (2013).  https://doi.org/10.1109/ICNF Google Scholar
  18. 18.
    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: . Int. J. Quant. Inf. 10, 1241005 (2012)Google Scholar
  19. 19.
    Rossi, M.A.C., Benedetti, C., Paris, M.G.A.: . Int. J. Quantum Inf. 12, 1560003 (2014)MathSciNetGoogle Scholar
  20. 20.
    Buscemi, F., Bordone, P.: . Phys. Rev. A 87, 042310 (2013)ADSGoogle Scholar
  21. 21.
    Kenfack, L.T., Tchoffo, M., Jipdi, M.N., Fuoukeng, J.C., Fai, L.C.: . J. Phys. Commun. 2, 055011 (2018)Google Scholar
  22. 22.
    Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: . Int. J. Quant. Inf. 15, 1750038 (2017)Google Scholar
  23. 23.
    Kenfack, L.T., Tchoffo, L.C., Fai, L.C.: . Eur. Phys. J. Plus. 132, 91 (2017)Google Scholar
  24. 24.
    Kenfack, L.T., Tchoffo, L.C., Fouokeng, G.C., Fai, L.C.: . Physica B 511, 123 (2017)ADSGoogle Scholar
  25. 25.
    Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: . Eur. Phys. J. Plus. 131, 380 (2016)Google Scholar
  26. 26.
    Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: . Int. J. Mod. Phys. B 30, 1750046 (2016)Google Scholar
  27. 27.
    Zhou, D., Lang, A., Joynt, R.: . Quantum Inf. Process. 9, 727 (2010)MathSciNetGoogle Scholar
  28. 28.
    De, A., Lang, A., Zhou, D., Joynt, R.: . Phys. Rev. A 83, 042331 (2011)ADSGoogle Scholar
  29. 29.
    Leggio, B., Franco, R.L., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: . Phys. Rev. A 92, 032311 (2015)ADSGoogle Scholar
  30. 30.
    D’Arrigo, A., Benenti, G., Franco, R.L., Falci, G., Paladino, E.: . Int. J. Quant. Inf. 12, 1461005 (2014)Google Scholar
  31. 31.
    Kenfack, L.T., Tchoffo, M., Fai, L.C.: . Phys. Lett. A 382, 2818 (2018)Google Scholar
  32. 32.
    Kenfack, L.T., Tchoffo, G.C., Fouokeng, G.C., Fai, L.C.: . Quantum Inf. Process. 17, 76 (2018)ADSGoogle Scholar
  33. 33.
    Xu, J. -S., Sun, K., Li, C. -F., et al.: . Nat. Commun. 4, 2851 (2013)ADSGoogle Scholar
  34. 34.
    Orieux, A., D’Arrigo, A., Ferranti, G., Franco, R.L., et al.: . Sci. Rep. 5, 8575 (2015)Google Scholar
  35. 35.
    Thompson, C., Vemuri, G., Agarwal, G.S.: . Phys. Rev. A 82, 053805 (2010)ADSGoogle Scholar
  36. 36.
    Bordone, P., Buscemi, F., Benedetti, C.: . Fluct. Noise Lett. 11, 1242003 (2012)Google Scholar
  37. 37.
    Sabin, C., Garcia-Alcaine, G.: . Eur. Phys. J. D 48, 435 (2008)ADSMathSciNetGoogle Scholar
  38. 38.
    Vidal, G., Werner, R.F.: . Phys. Rev. A 65, 032314 (2002)ADSGoogle Scholar
  39. 39.
    Bergli, J., Galperin, Y.M., Altshuler, B.L.: . J. Phys. 11, 025002 (2009)Google Scholar
  40. 40.
    Paladino, E., Faoro, L., Falci, G., Fazio, R.: . Phys. Rev. Lett. 88, 228304 (2002)ADSGoogle Scholar
  41. 41.
    Falci, G., D’Arrigo, A., Mastellone, A., Paladino, E.: . ibid. 94, 167002 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lionel Tenemeza Kenfack
    • 1
    Email author
  • Martin Tchoffo
    • 1
  • Lukong Cornelius Fai
    • 1
  1. 1.Department of Physics, Research Unit of Condensed Matter, Electronic and Signal Processing, Dschang School of Sciences and TechnologyUniversity of DschangDschangCameroon

Personalised recommendations