Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4258–4277 | Cite as

Entanglement Dynamics and Symmetry Breaking in Symmetric four Qubits GHZ- and W-type States Coupled to Classical Random Telegraph Noise in Mixed Environments

  • Lionel Tenemeza KenfackEmail author
  • Martin Tchoffo
  • Lukong Cornelius Fai
Article

Abstract

This paper investigates the time behavior of entanglement (quantified by negativity) and the symmetry breaking in a symmetric four-qubit system (initialized either in the GHZ-type or W-type states), interacting with a Markov and non-Markov random telegraph noise (RTN). Two different qubit-noise coupling configurations, namely C1 and C2 are investigated. In the first one (C1) it is assumed that, three of the qubits interact with the noise in a common environment (CE) and the remaining qubit in its own local environment while in the second one (C2) it is rather assumed that two of them interact in a CE and the rest also in their own CE. Using the entanglement between the different non-equivalent bipartitions of the qubits (obtained by dividing the system into two arbitrary blocks) as probe, it is demonstrated that the breaking of symmetry in the initialized state of the qubits occurs due to bipartitions of system in which none of the qubit(s) in the right block/partition share the same environment with the remaining qubit(s) in the left block/partition. On the other hand, it is shown that the CE induces an indirect interaction between the qubits which plays a constructive role in reducing the decay rate of entanglement. As a matter of fact, it is shown that the higher the number of qubit interacting in a CE, the more protected the entanglement of the overall system, demonstrating that the C1 scheme is more efficient for shield the system from the detrimental impacts induced by the RTN than the C2 one. Finally, it is shown that strong qubit-environment coupling strength also favors the exchanges of information between the qubits and the external environment.

Keywords

Classical noise Symmetry Entanglement Qubit 

Notes

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Benenti, G.S.G., Casati, G.: Principles of Quantum Computation and Information: Basic Tools and Special Topics. World Scientific, Singapore (2007)zbMATHGoogle Scholar
  2. 2.
    Amico, L., Fazio, R., Osterloh, A., Vedral, V.: . Rev. Mod. Phys. 80, 517 (2008)ADSGoogle Scholar
  3. 3.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Bennett, C.H.: . Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: . Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetGoogle Scholar
  6. 6.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: . Rev. Mod. Phys. 74, 145 (2002)ADSGoogle Scholar
  7. 7.
    Bennett, C., Brenstein, H., Popescu, S., Schumacher, B.: . Phys. Rev. A 53, 2046 (1996)ADSGoogle Scholar
  8. 8.
    Leggio, B., Franco, R.L., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: . Phys. Rev. A 92, 032311 (2015)ADSGoogle Scholar
  9. 9.
    DArrigo, A., et al.: . Int. J. Quant. Inf. 12, 1461005 (2014)Google Scholar
  10. 10.
    Xu, J.-S., Sun, K., Li, C.-F., et al.: . Nat. Commun. 4, 2851 (2013)ADSGoogle Scholar
  11. 11.
    Orieux, A., D’Arrigo, A., Ferranti, G., Franco, R.L., et al.: . Sci. Rep. 5, 8575 (2015)Google Scholar
  12. 12.
    Mu, Q., Zhao, X.: . Int. J. Theor. Phys. 55, 2711 (2016)Google Scholar
  13. 13.
    Guo, J., Zhang, X.: . Sci. Rep. 6, 32634 (2016)ADSGoogle Scholar
  14. 14.
    Cui, W., Xi, Z., Pan, Y.: . J. Phys. A: Math. Theor. 42, 155303 (2009)ADSGoogle Scholar
  15. 15.
    Szańkowski, P., Trippenbach, M., Cywiński, L., Band, Y.: . Quantum Inf. Process 14, 3367 (2015)ADSMathSciNetGoogle Scholar
  16. 16.
    Mortezapour, A., Borji, M.A., Franco, R.: . Laser Phys. Lett. 14, 055201 (2017)ADSGoogle Scholar
  17. 17.
    González-Gutiérrez, C., Román-Ancheyta, R., Espitia, D., Franco, R.: . Int. J. Quantum Inform. 14, 1650031 (2016)ADSGoogle Scholar
  18. 18.
    Espoukeh, P., Rahimi, R., Salimi, S., Pedram, P.: . Int. J. Quantum Inform. 13, 1550044 (2015)ADSGoogle Scholar
  19. 19.
    Espoukeh, P., Pedram, P.: . Int. J. Quantum Inform. 13, 1550004 (2015)ADSGoogle Scholar
  20. 20.
    Ali, M.: . Chin. Phys. B 24, 120303 (2015)Google Scholar
  21. 21.
    Ali, M.: . Open Systems and Information Dynamics 21, 1450008 (2014)MathSciNetGoogle Scholar
  22. 22.
    Siomau, M.: . Phys. Rev. A 82, 062327 (2010)ADSGoogle Scholar
  23. 23.
    Majtey, A., et al.: . Int. J. Quant. Inf. 8, 505 (2010)Google Scholar
  24. 24.
    Borras, A., et al.: . Phys. Rev. A 79, 022108 (2009)ADSGoogle Scholar
  25. 25.
    Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: . Phys. Rev. Lett. 100, 080501 (2008)ADSGoogle Scholar
  26. 26.
    Man, Z.-X., Xia, Y.-J., An, N.: . New J. Phys. 12, 033020 (2010)ADSMathSciNetGoogle Scholar
  27. 27.
    Feng, L.-J., Zhang, Y.-J., Zhang, L., Xia, Y.-J.: . Chin. Phys. B 24, 110305 (2015)ADSGoogle Scholar
  28. 28.
    Ma, X., Wang, A., Yang, X., You, H.: . J. Phys. A: Math. Gen. 38, 2761 (2005)ADSGoogle Scholar
  29. 29.
    Man, Z.-X., Xia, Y.-J., Franco, R.: . Sci. Rep. 5, 13843 (2015)ADSGoogle Scholar
  30. 30.
    Bellomo, B., Franco, R., Andersson, E., Cresser, J., Compagno, G.: . Phys. Scr. T 147, 014004 (2012)ADSGoogle Scholar
  31. 31.
    D’Arrigo, A., Franco, R., Benenti, G., Paladino, E., Falci, G.: . Ann. Phys. 35, 0211 (2014)ADSGoogle Scholar
  32. 32.
    Helm, J., Strunz, W.T.: . Phys. Rev. A 80, 042108 (2009)ADSGoogle Scholar
  33. 33.
    Helm, J., Strunz, W.T., Rietzler, S., Wuringer, L.E.: . Phys. Rev. A 83, 042103 (2011)ADSGoogle Scholar
  34. 34.
    Witzel, W.M., Young, K., Sarma, S.D.: . Phys. Rev. B 90, 115431 (2014)ADSGoogle Scholar
  35. 35.
    Strunz, W.T., Diosi, L., Gisin, N.: . Phys. Rev. Lett. 82, 1801 (1999)ADSMathSciNetGoogle Scholar
  36. 36.
    Stockburger, J., Grabert, H.: . Phys. Rev. Lett. 88, 170407 (2002)ADSGoogle Scholar
  37. 37.
    Crow, D., Joynt, R.: . Phys. Rev. A 89, 042123 (2014)ADSGoogle Scholar
  38. 38.
    Rossi, M., Benedetti, C., Matteo, G.: . Int. J. Quantum Inform. 12, 1560003 (2014)ADSGoogle Scholar
  39. 39.
    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: . Phys. Rev. A 87, 052328 (2013)ADSGoogle Scholar
  40. 40.
    Benedetti, C., Paris, M.G.A., Buscemi, F., Bordone, P.: Time-evolution of entanglement and quantum discord of bipartite systems subject to 1/f α noise. Proceedings of the 22nd International Conference on Noise and Fluctuations (ICNF) 323, 6578952 (2013).  https://doi.org/10.1109/ICNF CrossRefGoogle Scholar
  41. 41.
    Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: . Int. J. Quant. Inf. 10, 1241005 (2012)Google Scholar
  42. 42.
    Javed, M., Khan, S., Ullah, S.: . J. Russ. Laser Res. 37, 562 (2016)Google Scholar
  43. 43.
    Bordone, P., Buscemi, F., Benedetti, C.: . Fluct. Noise Lett. 11, 1242003 (2012)Google Scholar
  44. 44.
    Shamirzaie, M., Khan, S., Ullah, S.: . Fluct. Noise Lett. 17, 1850023 (2018)ADSGoogle Scholar
  45. 45.
    Kenfack, L.T., Tchoffo, M., Jipdi, M.N., Fuoukeng, J.C., Fai, L.C.: . J. Phys. Commun. 2, 055011 (2018)Google Scholar
  46. 46.
    Buscemi, F., Bordone, P.: . Phys. Rev. A 87, 042310 (2013)ADSGoogle Scholar
  47. 47.
    Kenfack, L.T., Tchoffo, M., Fai, L.C.: . Eur. Phys. J. Plus. 132, 91 (2017)Google Scholar
  48. 48.
    Tchoffo, M., Kenfack, L.T., Fouokeng, G.C., Fai, L.C.: . Eur. Phys. J. Plus. 131, 380 (2016)Google Scholar
  49. 49.
    Lionel, T.K., Martin, T., Collince, F.G., Fai, L.C.: . Int. J. Mod. Phys. B 30, 1750046 (2016)Google Scholar
  50. 50.
    Kenfack, L.T., Tchoffo, M., Fouokeng, G.C, Fai, L.C.: . Quantum Inf. Process 17, 76 (2018)ADSGoogle Scholar
  51. 51.
    Kenfack, L.T., Tchoffo, L.C., Fai, G.C.: . Physica B 511, 123 (2017)ADSGoogle Scholar
  52. 52.
    Kenfack, L.T., Tchoffo, M., Fouokeng, G.C., Fai, L.C.: . Int. J. Quant. Inf. 15, 1750038 (2017)Google Scholar
  53. 53.
    Rossi, M., Paris, M.: . J. Chem. Phys. 144, 024113 (2016)ADSGoogle Scholar
  54. 54.
    Paris, M.: . Physica A. 413, 256 (2014)ADSMathSciNetGoogle Scholar
  55. 55.
    Hamadou-Ibrahim, A., Plastino, A., Zander, C.: . J. Phys. A: Math. Theor. 43, 055305 (2010)ADSGoogle Scholar
  56. 56.
    Kenfack, L.T., Tchoffo, M., Fai, L.C.: . Phys. Lett. A 382, 2818 (2018)Google Scholar
  57. 57.
    Man, Z.-X., Tavakoli, A., Brask, J., Xia, Y.-J.: . Phys. Scr. 94, 075101 (2019)ADSGoogle Scholar
  58. 58.
    Man, Z.-X., Zhang, Q., Xia, Y.-J.: . Quant. Inf. Process. 18, 157 (2019)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lionel Tenemeza Kenfack
    • 1
    Email author
  • Martin Tchoffo
    • 1
  • Lukong Cornelius Fai
    • 1
  1. 1.Research Unit of Condensed Matter, Electronic and Signal Processing, Department of Physics, Dschang school of Sciences and TechnologyUniversity of DschangDschangCameroon

Personalised recommendations