Advertisement

Strong Privacy-preserving Two-party Scalar Product Quantum Protocol

  • Run-hua Shi
  • Mingwu ZhangEmail author
Article

Abstract

Under the assumption that the parties do not change their private inputs during the whole protocol execution, we present a probabilistic quantum protocol for secure two-party scalar product without the help of any third party, which can ensure the security of the strong privacy of two parties. Especially, the communication complexity of this protocol achieves O(1), and thus it is more suitable for applications with big data.

Keywords

Quantum Cryptography Privacy-Preserving Multi-party Secure Computation Scalar Product 

Notes

Acknowledgment

This work was supported by National Natural Science Foundation of China (No.61772001 and 61672010).

References

  1. 1.
    P. W. Shor. Algorithms for Quantum Computation – Discrete Logarithms and Factoring. Proceedings of 35th Annual Symposium on the Foundations of Computer Science (IEEE, New York, 1994), pp. 124-134.Google Scholar
  2. 2.
    L. K. Grover. A fast quantum mechanical algorithm for database search. Proceedings of 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212-219.Google Scholar
  3. 3.
    C.H. Bennett & G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, New York, 1984), pp. 175-179.Google Scholar
  4. 4.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Qin, H., Tang, W.K.S., Tso, R.: Rational quantum secret sharing. Sci. Rep.8, 11115 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56, 1154 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Colbeck, R.: Impossibility of secure two-party classical computation. Phys. Rev. A. 76, 062308 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Buhrman, H., Christandl, M., Schaffner, C.: Complete Insecurity of Quantum Protocols for Classical Two-Party Computation. Phys. Rev. Lett. 109, 160501 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Shi, R.H., Mu, Y., Zhong, H., et al.: Quantum oblivious set-member decision protocol. Phys. Rev. A. 92(2), 022309 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Shi, R.H., Mu, Y., Zhong, H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci.370-371, 147–158 (2016)CrossRefGoogle Scholar
  11. 11.
    He, L., Huang, L., Yang, W., X, R.: A protocol for the secure two-party quantum scalar product. Phys. Lett. A. 376, 1323–1327 (2012)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Y. Wang, G. He. Quantum secure scalar product with continuous-variable clusters. Proceedings of the 18th AQIS Conference (8-12 September 2018, Nagoya, Japan). Available at http://www.ngc.is.ritsumei.ac.jp/~ger/static/AQIS18/OnlineBooklet/161.pdf (2018).
  13. 13.
    Shi, R.H., Mu, Y., Zhong, H., et al.: Secure Multiparty Quantum Computation for Summation and Multiplication. Sci. Rep.6(19655), (2016)Google Scholar
  14. 14.
    A. Majumder, S. Mohapatra, A. Kumar. Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud. arXiv:1707.07460v3 (2017).Google Scholar
  15. 15.
    He, G.P.: Practical quantum oblivious transfer with a single photon. Laser Phys.29(3), 035201 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    G. Brassard, P. Høyer, and A. Tapp. Quantum Counting. Proceedings of 25th International Colloquium on Automata, Languages and Programming, LNCS 1443 (Springer-Verlag, Berlin Heidelberg, 1998), pp. 820-831.Google Scholar
  17. 17.
    Mosca, M.: Counting by quantum eigenvalue estimation. Theor. Comput. Sci. 264, 139 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Diao, Z.J., Huang, C.F., Wang, K.: Quantum Counting: Algorithm and Error Distribution. Acta. Appl. Math. 118, 147 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Holevo. Probabilistic and Statistical Aspects of Quantum Theory. Publications of the Scuola Normale Superiore, Springer, 2011.Google Scholar
  20. 20.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer ScienceHubei University of TechnologyWuhan CityChina
  2. 2.School of Control and Computer EngineeringNorth China Electric Power UniversityBeijing CityChina

Personalised recommendations