Advertisement

Entanglement Teleportation of a Two-Qubit System via Correlated Quantum Channels

  • Ying Long
  • You-neng GuoEmail author
  • Xiao-zhi Liu
  • Qing-long Tian
Article

Abstract

We address the teleportation of a two-qubit entangled state through quantum channels where successive uses of the channels are correlated, and investigate how memory effect induced by successive uses of the channels influences the entanglement teleportation and fidelity. The analytical expressions of the entanglement teleportation and average fidelity under three different correlated channels are presented. Our results show that, the output entanglement teleportation strongly depends on the source state, the initial entanglement of teleporting state and parameters of noisy channels. However, the average fidelity is only affected by the parameters of the source state and noisy channels.

Keywords

Entanglement teleportation Correlated quantum channels Average fidelity 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No.11747107), the Natural Science Foundation of Hunan Province (Grant No.2017JJ3346), the Scientific Research Project of Hunan Province Department of Education (Grant Nos.17A021 and 16C0134), the Project of Science and Technology Plan of Changsha (Kc1809001 and K1705022), and Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1810)

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wotters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Khoury, A.Z., Milman, P.: Quantum teleportation in the spin-orbit variables of photon pairs. Phys. Rev. A 83, 060301 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quantum Inf. Process. 13, 1789 (2014)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hu, X., Gu, Y., Gong, Q., Guo, G.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A 92, 012338 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: An experimental study on the influence of local environments. Phys. Rev. A. 90, 042332 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Fortes, R., Rigolin, G.: Probabilistic quantum teleportation via thermal entanglement. Phy. Rev. A. 96, 022315 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Jafarzadeh, M., Jahromi, H., Amniat-Talab, M.: Teleportation of quantum resources and quantum Fisher information under Unruh effect. Quantum Inf. Process. 17, 165 (2018)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Jin, Y.: The efects of vacuum fuctuations on teleportation of quantum Fisher information. Scientific Rep. 7, 40193 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Metwally, M.: Estimation of teleported and gained parameters in a non-inertial frame. Laser Phys. Lett. 14, 049601 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    DÁriano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272, 32 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Lee, J., Min, H., Dahm Oh, S.: Multipartite entanglement for entanglement teleportation. Phys. Rev. A 66, 052318 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Ye, Y., Tongqi, L., Yu-En, L., Zhong, Y.Q.: Quantum teleportation via a two-qubit Heisenberg XY chain effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38, 3235 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ye, Y.: Teleportation with a mixed state of four qubits and the generalized singlet fraction. Phys. Rev. A 74, 052305 (2006)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Ye, Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78, 022334 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Pramanik, T., Majumdar, A.S.: Improving the fidelity of teleportation through noisy channels using weak measurement. Phys. Lett. A 377, 3209 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Mohammadi, H., Akhtarshenas, S.J., Kheirandish, F.: Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system. Eur. Phys. J. D. 62, 439 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Qin, W., Guo, J.L.: Quantum correlations and teleportation in heisenberg XX spin chain. Int. J. Theor. Phys. 54, 2386 (2015)CrossRefGoogle Scholar
  25. 25.
    Joo, J., Ginossar, E.P.: Efficient scheme for hybrid teleportation via intangled coherent states in circuit quantum electrodynamics. Nature 6, 26338 (2016)Google Scholar
  26. 26.
    Xu, X., Wang, X.: Controlled qunatum teleportation via the GHZ entangled ions in the ion-trapped system. Int. J. Theor. Phys. 55, 3551 (2016)CrossRefGoogle Scholar
  27. 27.
    Grochowski, P.T., Rajchel, G., Kiaka, F., Dragan, A.: Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding. Phys. Rev. D 95, 105005 (2017)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Mirmasoudi, F., Ahadpour, S.: Dynamics super quantum discord and quantum discord teleportation in the Jaynes-Cummings model. J. Mod. Opt. 65, 730 (2017)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, K., Yu, X.T., Zhang, Z.C.: Teleportation of two-qubit entangled state via non-maximally entangled GHZ state. Procedia Com. Sci. 131, 1202 (2018)CrossRefGoogle Scholar
  30. 30.
    Choudhury, B.S., Dhara, A.: Simultaneous teleportation of arbitrary two-qubit and two arbitrary single-qubit states using a single quantum resource. Int. J. Theor. Phys. 57, 1 (2018)CrossRefGoogle Scholar
  31. 31.
    Braunstein, S.L., van Loock, P: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Andersen, U.L., Ralph, T.C.: High-fidelity teleportation of continuous-variable quantum states using delocalized single photons. Phys. Rev. Lett. 111, 050504 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Yeo, Y., Skeen, A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    DÁrrigo, A., Benenti, G., Falci, G.: Quantum capacity of dephasing channels with memory. J. Phys. 9, 310 (2007)Google Scholar
  35. 35.
    Macchiavello, C., Palma, G.M., Virmani, S.: Transition behavior in the channel capacity of two-quibit channels with memory. Phys. Rev. A 69, 010303 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    Uhlmann, A.: The transition probability in the state space of a algebra. Rep. Math. Phys. 9, 273 (1976)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Bandyopadhyay, S., Sanders, B.C.: Quantum teleportation of composite systems via mixed entangled states. Phys. Rev. A 74, 032310 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Bandyopadhyay, S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ying Long
    • 1
  • You-neng Guo
    • 1
    Email author
  • Xiao-zhi Liu
    • 1
  • Qing-long Tian
    • 2
  1. 1.College of Electronic Communication and Electrical EngineeringChangsha UniversityChangshaPeople’s Republic of China
  2. 2.College of Mathematics and Computing ScienceChangsha UniversityChangshaPeople’s Republic of China

Personalised recommendations