Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4184–4193 | Cite as

Restoration of Coherence by Local PT-Symmetric Operator

  • Xiao-Gang Fan
  • Wen-Yang Sun
  • Dong Wang
  • Liu YeEmail author
Article

Abstract

In this work, we mainly investigate effect of PT-symmetric operation on the dynamics of the relative entropy of coherence for a two-level system within non-Markovian environments, and put forward a feasible physical scheme to recover coherence by means of optimal PT-symmetric operation. The results show that the damaged quantum coherence can be restored to a large extent. Furthermore, the freezing phenomenon of the coherence can be detected by using the optimal PT-symmetric operation strength within the non-Markovian environments.

Keywords

PT-symmetric operator Relative entropy of coherence Non-Markovian environments 

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 11575001, 61601002 and 11847020), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and Natural Science Foundation of Education Department of Anhui Province (Grant No. KJ2016SD49), and also the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

References

  1. 1.
    Aberg, J: Quantifying superposition. arXiv:quant-ph/0612146(2006)
  2. 2.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSGoogle Scholar
  3. 3.
    Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSGoogle Scholar
  4. 4.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)MathSciNetzbMATHADSGoogle Scholar
  5. 5.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)MathSciNetzbMATHADSGoogle Scholar
  6. 6.
    Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)ADSGoogle Scholar
  7. 7.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)MathSciNetADSGoogle Scholar
  8. 8.
    Killoran, N., Steinhoff, F.E.S., Plenio, M.B.: Converting nonclassicality into entanglement. Phys. Rev. Lett. 116, 080402 (2016)ADSGoogle Scholar
  9. 9.
    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSGoogle Scholar
  10. 10.
    Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117, 030401 (2016)ADSGoogle Scholar
  11. 11.
    Hu, M.L., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)ADSGoogle Scholar
  12. 12.
    Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)MathSciNetzbMATHADSGoogle Scholar
  13. 13.
    Zhang, Z.Y., Liu, J.M.: Quantum correlations and coherence of polar symmetric top molecules in pendular states. Sci. Rep. 7, 17822 (2017)ADSGoogle Scholar
  14. 14.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)MathSciNetzbMATHADSGoogle Scholar
  15. 15.
    Wang, D., Huang, A., Sun, W., Shi, J., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)MathSciNetzbMATHADSGoogle Scholar
  16. 16.
    Wang, D., Hu, Y., Wang, Z., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)zbMATHADSGoogle Scholar
  17. 17.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)ADSGoogle Scholar
  18. 18.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSGoogle Scholar
  19. 19.
    Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetzbMATHADSGoogle Scholar
  20. 20.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)MathSciNetzbMATHADSGoogle Scholar
  21. 21.
    Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod.Phys. 79, 555 (2007)MathSciNetzbMATHADSGoogle Scholar
  22. 22.
    Gour, G., Spekkens, R.W.: Fundamental limitations for quantum and nanoscale thermodynamics. J. Phys. 10, 033023 (2008)Google Scholar
  23. 23.
    Gour, G., Marvian, I., Spekkens, R.W.: Measuring the quality of a quantum reference frame: The relative entropy of frameness. Phys. Rev. A 80, 012307 (2009)ADSGoogle Scholar
  24. 24.
    Brando, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)ADSGoogle Scholar
  25. 25.
    Bowles, J., Vertesi, T., Quintino, M.T., Brunner, N.: One-way Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 112, 200402 (2014)ADSGoogle Scholar
  26. 26.
    Costa, A.C.S., Angelo, R.M.: Quantification of Einstein-Podolski-Rosen steering for two-qubit states. Phys. Rev. A 93, 020103(R) (2016)ADSGoogle Scholar
  27. 27.
    Wang, Y.T., Tang, J.S., Li, C.F., et al.: Directly measuring the degree of quantum coherence using interference fringes. Phys. Rev. Lett. 118, 020403 (2017)MathSciNetADSGoogle Scholar
  28. 28.
    He, Z., Zeng, H.S., Li, Y., Wang, Q., Yao, C.: Non-Markovianity measure based on the relative entropy of coherence in an extended space. Phys. Rev. A 96, 022106 (2017)ADSGoogle Scholar
  29. 29.
    Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)ADSGoogle Scholar
  30. 30.
    Chen, M., Wang, D., Ye, L.: Characterization of dynamical measurement’s uncertainty in a two-qubit system coupled with bosonic reservoirs. Phys. Lett. A 383, 977 (2019)ADSGoogle Scholar
  31. 31.
    Chen, P., Ye, L., Wang, D.: The effect of non-Markovianity on the measurement-based uncertainty. Eur. Phys. J. D 73, 108 (2019)ADSGoogle Scholar
  32. 32.
    Garraway, B.M.: Nonperturbative decay of an atomic system in a cavity. Phys. Rev. A 55, 2290 (1997)ADSGoogle Scholar
  33. 33.
    Maniscalco, S., Petruccione, F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111 (2006)MathSciNetADSGoogle Scholar
  34. 34.
    Dhar, H.S., Bera, M.N., Adesso, Gerardo: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)ADSGoogle Scholar
  35. 35.
    Chanda, T., Samyadeb, B.: Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1–12 (2016)MathSciNetzbMATHADSGoogle Scholar
  36. 36.
    Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetry. Phys. Rev. Lett. 80, 5243 (1998)MathSciNetzbMATHADSGoogle Scholar
  37. 37.
    Chen, S., Chen, G., Chen, Y.: Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 90, 054301 (2014)ADSGoogle Scholar
  38. 38.
    Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2006)MathSciNetADSGoogle Scholar
  40. 40.
    Sergi, A., Zloshchastiev, K.G.: Non-Hermitian quantum dynamics of a two-level system and models of dissipative environments. Int. J. Mod. Phys. B 27, 1345053 (2013)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Sergi, A., Zloshchastiev, K.G.: Time correlation functions for non-Hermitian quantum systems. Phys. Rev. A 91, 062108 (2015)ADSGoogle Scholar
  42. 42.
    Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local PT-symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)ADSGoogle Scholar
  43. 43.
    Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)MathSciNetzbMATHADSGoogle Scholar
  44. 44.
    Bromley, T.R., Cianciaruso, M., Adesso1, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)Google Scholar
  45. 45.
    Hu, M.L., Fa, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-Gang Fan
    • 1
  • Wen-Yang Sun
    • 1
  • Dong Wang
    • 1
    • 2
  • Liu Ye
    • 1
    Email author
  1. 1.School of Physics & Material ScienceAnhui UniversityHefeiChina
  2. 2.CAS Key Laboratory of Quantum InformationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations