Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4152–4169 | Cite as

Entanglement of Semi-Bell States in Non-Inertial Frames

  • Leili EsmaeilifarEmail author
  • Zeynab Harsij
  • Behrouz Mirza
Article

Abstract

Semi-Bell states are exploited for storing and sending information in non-inertial frames. In this paper, we consider four types of semi-bell states, \(|{\varPhi }_{\alpha }^{\pm }\rangle =\alpha |0\rangle |0\rangle \pm \sqrt {1-\alpha ^{2}}|1\rangle |1\rangle \) and \(|{\varPsi }_{\alpha }^{\pm }\rangle =\alpha |0\rangle |1\rangle \pm \sqrt {1-\alpha ^{2}}|1\rangle |0\rangle \), and study entanglements and other quantum correlations of these states from the viewpoint of an accelerated and an inertial observers by computing such measures as negativity, quantum coherence, and purity of these states. As expected, these measures degrade for semi-bell states with increasing acceleration. The states, however, exhibit different types of degradation depending on the statistics of the particles. Entanglement, coherence, and purity of bosonic states degrade more rapidly than do states with fermionic statistics. A duality exists in the measures of the two types of semi-bell states and for the maximally entangled states (\(\alpha =\frac {1}{\sqrt {2}}\)), there is no difference between the measures of \(|{\varPhi }_{\alpha }^{\pm }\rangle \) and \(|{\varPsi }_{\alpha }^{\pm }\rangle \). In the fermionic case, differences of the measures between the \(|{\varPhi }_{\alpha }^{\pm }\rangle \) and \(|{\varPsi }_{\alpha }^{\pm }\rangle \) states are greater for large values of acceleration, while in the bosonic case, their subtractions are larger for small values of acceleration.

Keywords

Relativistic quantum information Entanglement Nonclassical correlation Non-inertial frames 

Notes

References

  1. 1.
    Chen, J., Grogan, S. h., Johnston, N., Li, C. h., Plosker, S.: Quantifying the coherence of pure quantum states. Phys. Rev. A 94, 042313 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Horodecki, M.: Entanglement measures. Quantum Inf. Comput. 1, 3 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Schroedinger, E.: The present status of quantum mechanics. Naturwissenschaften 23, 823807 (1935)Google Scholar
  9. 9.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Veitch, V., Mousavian, S.A.H., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation, vol. 16 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhang, Y.R., Shao, L.H., Li, Y., Fan, H.: Quantifying Coherence in Infinite Dimensional Systems, arXiv:1505.05270 [quant-ph]
  13. 13.
    Girolami, D., Yadin, B.: Witnessing multipartite entanglement by detecting coherence. Phys. Rev. Lett. 115, 020403 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Shao, L.H., Xi, Z.J., Fan, H., Li, Y.M.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91, 042120 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Chen, X., Wu, C., Su, H.Y., Ren, C.L., Chen, J.L.: Bipartite quantum coherence in noninertial frames, arXiv:1601.02741[quant-ph]
  16. 16.
    Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Chitambar, E., Hsieh, M.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Mohammadzadeh, H., Ebadi, Z., Mehri-Dehnavi, H., Mirza, B., Rahimi Darabad, R.: Entanglement of arbitrary spin modes in expanding universe. Quantum Inf. Process. 14, 4787 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Pierini, R., Moradi, S., Mancini, S.: Spacetime anisotropy affects cosmological entanglement. Nuclear Phys. B 924, 684 (2017)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Pierini, R., Moradi, S., Mancini, S.: Entanglement in anisotropic expanding spacetime. Eur. Phys. J. D 73, 3 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    Alsing, P.M., Milburn, G.J.: . Phys. Rev. Lett. 91, 180404 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Alsing, P.M., Milburn, G.J.: . Quant. Inf. Comp. 2, 487 (2002)Google Scholar
  26. 26.
    Czachor, M., Wilczewski, M.: . Phys. Rev. A 68, 010302 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in non-inertial frames. Phys. Rev. A 74, 032326 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Unruh, W.G., Wald, R.M.: . Phys. Rev. D 29, 1047 (1984)ADSCrossRefGoogle Scholar
  29. 29.
    Richter, B., Omar, Y.: . Phys. Rev. A 92, 022334 (2015)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Mehri-Dehnavi, H., Mirza, B., Mohammadzadeh, H., Rahimi, R.: Pseudo-Entanglement Evaluated in noninertial frames. Ann. Phys. 326, 1320–1333 (2011)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Mehri-Dehnavi, H., Rahimi, R., Mohammadzadeh, H., Ebadi, Z., Mirza, B.: Quantum teleportation with nonclassical correlated states in noninertial frames. Quantum Inf. Process. 14, 1025 (2015)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Alsing, P.M., Fuentes, I.: Observer dependent entanglement. Class Quantum Grav 29 224001 (2012)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity, Benjamin Cummings Publishers (2003)Google Scholar
  34. 34.
    Lindblad, G.: Completely Positive Maps and Entropy Inequalities. Commun. Math. Phys. 40, 147 (1975)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Ruskai, M.B.: Inequalities for Quantum Entropy: A Review with Conditions for Equality. J. Math. Phys. 43, 4358 (2002)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Bruss, D.: . J. Math. Phys. 43, 4237 (2002)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Vidal, G., Werner, R.F.: . Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Barnett, S.M.: Quantum information. Oxford University Press, Oxford (2009)Google Scholar
  39. 39.
    Peres, A.: Quantum theory: concepts and methods. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  40. 40.
    Vidal, G., Werner, R.F.: A computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)ADSCrossRefGoogle Scholar
  41. 41.
    Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge (2000)Google Scholar
  43. 43.
    Bruschi, D.E., Louko, J., Martin-Martinez, E., Dragan, A., Fuentes, I.: The Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leili Esmaeilifar
    • 1
    Email author
  • Zeynab Harsij
    • 2
  • Behrouz Mirza
    • 2
  1. 1.Department of physicsInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Department of PhysicsIsfahan University of TechnologyIsfahanIran

Personalised recommendations