Advertisement

Critical Dynamics of Transverse-field Quantum Ising Model using Finite-Size Scaling and Matrix Product States

  • S. Y. PangEmail author
  • S. V. Muniandy
  • M. Z. M. Kamali
Article

Abstract

The study of phase transition is usually done by numerical simulation of finite system. Conventional methods such as Monte Carlo simulations and phenomenological renormalization group methods obtain the critical exponents without obtaining the quantum wavefunction of the system. The Matrix Product States formalism allows one to obtain accurate numerical wavefunctions of short ranged interacting quantum many-body systems. In this study we combine the Finite Size Scaling theory and Matrix Product States formalism to study the critical dynamics of one-dimensional quantum Ising model. Finite size simulations of 20, 40, 60, 80, 100 and 120 spins are done using the Density Matrix Renormalization Group to obtain the ground state wavefunction of the system. The thermodynamic quantities such as the magnetization, susceptibility and correlation function are calculated. The critical exponents independently calculated are respectively β/ν = 0.1235(1), γ/ν = 1.7351(2), and η = 0.249(1). They conform with the theoretical values from analytical solution and fulfil the hyperscaling relation. We showed that both methods combined can reliably study the critical dynamics of one-dimensional Ising-like quantum lattice systems. Application of the study on water-ice phase transition of single-file water in nanopores is proposed.

Keywords

Quantum Ising model Finite-size Scaling Matrix Product States Binder’s Cumulant 

Notes

Acknowledgements

The authors thank the Malaysian Ministry of Higher Education (MOHE) for FRGS grant: FP031-2017A and University of Malaya Frontier Research Grant: FG032-17AFR. S.Y. Pang thanks Dr. Miles Stoudenmire for his kind assistance in technical matters related to the ITensor Library. S.Y. Pang is supported by Skim Biasiswa MyBrainSc Scholarship under the Malaysian Ministry of Higher Education (MOHE).

References

  1. 1.
    Cardy, J. (Editor).: Finite-size scaling (Vol. 2). Elsevier (2012).Google Scholar
  2. 2.
    Inoue, J.I.: Application of the quantum spin glass theory to image restoration. Phys Rev E. 63(4), 046114 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Venturelli, D., Mandra, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully connected spin glasses. Phys Rev X. 5(3), 031040 (2015)Google Scholar
  4. 4.
    McMahon, P.L., Marandi, A., Haribara, Y., Hamerly, R., Langrock, C., Tamate, S., et al.: A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science. 354(6312), 614–617 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Sengupta, K., Powell, S., Sachdev, S.: Quench dynamics across quantum critical points. Phys. Rev. A. 69, 053616 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quence in a spin chain. Phys. Rev. Lett. 102, 127204 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E. 58, 5355–5363 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (2000).Google Scholar
  10. 10.
    Orús, R.: A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann Phys. 349, 117–158 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    ITensor C++ Library, available at itensor.org
  12. 12.
    Sachdev, S.: Quantum phase transitions. Cambridge University Press, New York (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann Phys. 57(1), 79–90 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    Elliott, R.J., Pfeuty, P., Wood, C.: Ising model with a transverse field. Phys Rev Lett. 25(7), 443 (1970)ADSCrossRefGoogle Scholar
  15. 15.
    Dutta, A., Aeppli, G., Chakrabarti, B.K., Divakaran, U., Rosenbaum, T.F., Sen, D.: Quantum phase transitions in transverse field spin models: from statistical physics to quantum information. Cambridge University Press, Delhi (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Binder, K.: Some recent progress in the phenomenological theory of finite size scaling and application to Monte Carlo studies of critical phenomena. In: Privman, V. (ed.) Finite size scaling and numerical simulation of statistical systems, pp. 173–219. World Scientific Publishing, Singapore (1990)CrossRefGoogle Scholar
  17. 17.
    Godoy, M., Figueiredo, W.: Critical behavior of the mixed-spin Ising model with two competing dynamics. Phys Rev E. 65(2), 026111 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Merdan, Z., Erdem, R.: The finite-size scaling study of the specific heat and the Binder parameter for the six-dimensional Ising model. Phys Lett A. 330(6), 403–407 (2004)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Hasenbusch, M.: The Binder cumulant at the Kosterlitz–Thouless transition. J Stat Mech Theory Exp. 2008(08), P08003 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Selke, W.: The critical Binder cumulant for isotropic Ising models on square and triangular lattices. J Stat Mech Theory Exp. 2007(04), P04008 (2007)CrossRefGoogle Scholar
  21. 21.
    Verstraete, F., Cirac, J.I.: Matrix product states represent ground states faithfully. Phys Rev B. 73(9), 094423 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: Area laws for the entanglement entropy. Rev Mod Phys. 82(1), 277 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann Phys. 326(1), 96–192 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Um, J., Lee, S.I., Kim, B.J.: Quantum Phase Transition and Finite-Size Scaling of the One-Dimensional Ising Model. J Korean Phys Soc. 50(1), 285 (2007)Google Scholar
  25. 25.
    Schollwöck, U.: The density-matrix renormalization group. Rev Mod Phys. 77(1), 259 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    White, S.R.: Density matrix formulation for quantum renormalization groups. Phys Rev Lett. 69(19), 2863 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys Rev B. 48(14), 10345 (1993)ADSCrossRefGoogle Scholar
  28. 28.
    Kole, A. H.: Density Matrix Renormalization Group calculations for the Ising Model with a Transverse Field (Bachelor's thesis) (2018).Google Scholar
  29. 29.
    Zhang, X., Hu, G., Zhang, Y., Li, X., Chen, X.: Finite-size scaling of correlation functions in finite systems. Sci China Phys Mech Astron. 61(12), 120511 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Saha, S.K., Chakravorty, D.: One-dimensional organic giant dielectrics. Appl Phys Lett. 89(4), 043117 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Köfinger, J., Dellago, C.: Orientational dynamics and dielectric response of nanopore water. Phys Rev Let. 103(8), 080601 (2009)CrossRefGoogle Scholar
  32. 32.
    Kreuer, K.D., Paddison, S.J., Spohr, E., Schuster, M.: Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chemical reviews. 104(10), 4637–4678 (2004)CrossRefGoogle Scholar
  33. 33.
    Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science. 312(5776), 1034–1037 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Corry, B.: Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B. 112(5), 1427–1434 (2008)CrossRefGoogle Scholar
  35. 35.
    Köfinger, J., Dellago, C.: Single-file water as a one-dimensional Ising model. New J Phys. 12(9), 093044 (2010)CrossRefGoogle Scholar
  36. 36.
    Koga, K., Gao, G.T., Tanaka, H., Zeng, X.C.: Formation of ordered ice nanotubes inside carbon nanotubes. Nature. 412(6849), 802 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    Maniwa, Y., Kataura, H., Abe, M., Suzuki, S., Achiba, Y., Kira, H., Matsuda, K.: Phase transition in confined water inside carbon nanotubes. J Phys Soc Jpn. 71(12), 2863–2866 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    Brovchenko, I., Oleinikova, A.: Interfacial and confined water. Elsevier. (2008)Google Scholar
  39. 39.
    Brovchenko, I., Geiger, A., Oleinikova, A.: Water in nanopores: II. The liquid–vapour phase transition near hydrophobic surfaces. J Phys Condens Matter. 16(45), S5345 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Bai, J., Angell, C.A., Zeng, X.C.: Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proc Natl Acad Sci. 107(13), 5718–5722 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Zhao, W.H., Bai, J., Yuan, L.F., Yang, J., Zeng, X.C.: Ferroelectric hexagonal and rhombic monolayer ice phases. Chem Sci. 5(5), 1757–1764 (2014)CrossRefGoogle Scholar
  42. 42.
    Zhu, W., Zhu, Y., Wang, L., Zhu, Q., Zhao, W.H., Zhu, C., et al.: Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. J Phys Chem C. 122(12), 6704–6712 (2018)CrossRefGoogle Scholar
  43. 43.
    Zangi, R.: Water confined to a slab geometry: a review of recent computer simulation studies. J Phys Condens Matter. 16(45), S5371 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Landau, D.P.: Monte Carlo Studies OP Finite Size Effects at First and Second Order Phase Transitions. In: Privman, V. (ed.) Finite size scaling and numerical simulation of statistical systems, pp. 223–260. World Scientific Publishing, Singapore (1990)CrossRefGoogle Scholar
  45. 45.
    Nightingale, M.P.: Transfer matrices, phase transitions, and critical phenomena: numerical methods and applications. In: Privman, V. (ed.) Finite size scaling and numerical simulation of statistical systems, pp. 287–351. World Scientific Publishing, Singapore (1990)Google Scholar
  46. 46.
    Cirac, J.I., Poilblanc, D., Schuch, N., Verstraete, F.: Entanglement spectrum and boundary theories with projected entangled-pair states. Phys Rev B. 83(24), 245134 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Theoretical & Computational Physics, Department of PhysicsUniversity of MalayaKuala LumpurMalaysia
  2. 2.Center for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations