Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4093–4104 | Cite as

Designing Secure Quantum Key Agreement Protocols Against Dishonest Participants

  • Wei-cong Huang
  • Yong-kai Yang
  • Dong JiangEmail author
  • Chao-hui Gao
  • Li-jun Chen
Article

Abstract

Quantum key agreement (QKA) aims to negotiate a secure and consistent key among several participants. In this paper, we find that a type of QKA protocol is not secure when a participant is dishonest. He can make the honest participants obtain wrong final keys, which may lead to serious consequences. To resist such attacks, we design a defense strategy by introducing a trusted third party. The theoretical analysis results show that our defense strategy not only can detect the dishonest participant’s attacks, but also can identify who is dishonest. Finally we design an optical platform for participants, and show that both our attack and defense strategies are feasible with current technologies.

Keywords

Quantum key agreement Participant’s attacks Trusted third party 

Notes

Acknowledgements

This research is financially supported by the National Key Research and Development Program of China (NO. 2017YFA0303700), the Major Program of National Natural Science Foundation of China (No. 11690030, 11690032), the National Natural Science Foundation of China (No. 61771236), and the Excellence Research Program of Nanjing University.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal processing, pp 175–179, Bangalore (1984)Google Scholar
  2. 2.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Jiang, D., Chen, Y., Gu, X., Xie, L., Chen, L.: Deterministic secure quantum communication using a single d-level system. Sci. Rep. 7, 44934 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Int. J. Quant. Inf. 3(supp01), 143–143 (2008)CrossRefGoogle Scholar
  6. 6.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88(12), 127902 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Gordon, K.J., Fernandez, V., Buller, G.S., Rech, I., Cova, S.D., Townsend, P.D.: Quantum key distribution system clocked at 2 GHz. Opt. Express 13(8), 3015–3020 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98(1), 010504 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, S., Chen, W., Guo, J.F., Yin, Z.Q., Li, H.W., Zhou, Z., Guo, G.C., Han, Z.F.: 2 GHz clock quantum key distribution over 260 km of standard telecom fiber. Opt. Lett. 37(6), 1008–1010 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)CrossRefGoogle Scholar
  13. 13.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quant. Inf. Process 12(2), 921–932 (2013)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quant. Inf. Process. 13(11), 2391–2405 (2014)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using bell states and bell measurement. Quant.Inf. Process 42(4), 1–10 (2017)zbMATHGoogle Scholar
  17. 17.
    Gu, J., Hwang, T.: Improvement of “Novel Multiparty Quantum Key Agreement Protocol with GHZ States”. Int. J. Theor. Phys. 56(10), 1–9 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cao, H., Ma, W.: Multi-party traveling-mode quantum key agreement protocols immune to collusive attack. Quantum Inf. Process 17(9), 219 (2018)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Cao, H., Ma, W.: Efficient multi-party quantum key agreement protocol based on nonorthogonal quantum entangled pairs. Laser Phys. Lett. 15(9), 095201 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Cao, H., Ma, W.: Multiparty quantum key agreement based on quantum search algorithm. Sci. Rep. 7, 45046 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process 12(4), 1797–1805 (2013)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu, K.F., Yang, C.W., Hwang, T., Li, C.M., Gu, J.: Design of quantum key agreement protocols with strong fairness property. arXiv:quant-ph/1510.02353v2 (2017)
  23. 23.
    Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process 42 (4), 1–10 (2017)ADSzbMATHGoogle Scholar
  24. 24.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J,. Quant. Inf. 15(3), 1750018 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Cai, T., Jiang, M., Cao, G.: Multi-party quantum key agreement with five-qubit brown states [J]. Quantum Inf. Process 17(5), 103 (2018)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with G-like States and Bell States. Int. J. Theor. Phys. 57(6), 1811–1822 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, S.S., Xu, G.B., Liang, X.Q., Wu, Y.L.: Multiparty quantum key agreement with four-qubit symmetric W state. Int. J. Theor. Phys. 57(12), 3716–3726 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yin, X.R., Ma, W.P.: Multiparty quantum key agreement based on three-photon entanglement with unidirectional qubit transmission. Int. J. Theor. Phys. 58(2), 631–638 (2019)CrossRefGoogle Scholar
  29. 29.
    Zhao, X.Q., Zhou, N.R., Chen, H.Y., Gong, L.H.: Multiparty quantum key agreement protocol with entanglement swapping. Int. J. Theor. Phys., 1–15 (2018)Google Scholar
  30. 30.
    Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Abulkasim, H., Farouk, A., Alsuqaih, H., Hamdan, W., Hamad, S., Ghose, S.: Improving the security of quantum key agreement protocols with single photon in both polarization and spatial-mode degrees of freedom. Quant. Inf. Process 17(11), 316 (2018)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quant. Inf. Process 12(11), 3411–3420 (2013)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.j.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Lin, S., Guo, G.D., Xu, Y.Z., Sun, Y., Liu, X.F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private bell state. Opt. Commun. 282(12), 2460–2463 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    Xiu, X.M., Dong, H.K., Dong, L., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entanglement swapping. Opt. Commun. 282(12), 2457–2459 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Nguyen, B.A.: Quantum exam. Phys. Lett. A 350(3), 174–178 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Qin, S.J., Gao, F., Guo, F.Z., Wen, Q.Y.: Comment on “two-way protocols for quantum cryptography with a nonmaximally entangled qubit pair”. Phys. Rev. A 82(82), 036301 (2010)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Novel Software TechnologyNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations