Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4079–4092 | Cite as

Deterministic Controlled Remote State Preparation of Real-Parameter Multi-Qubit States via Maximal Slice States

  • Kaihang ZhouEmail author
  • Lei Shi
  • Bingbing Luo
  • Yang Xue
  • Chao Huang
  • Zhiqiang Ma
  • Jiahua Wei
Article

Abstract

By exploiting three-qubit entangled states and appropriate measurement basis, we propose efficient protocols for deterministic controlled remote state preparation of arbitrary real-parameter multi-qubit states, in which the maximal slice states are used as quantum channel. The successful probability of our schemes can reach up to 100% by using multi-qubit mutually orthogonal measurement basis without the introduction of auxiliary particles. Based on the implementation schemes for preparing arbitrary two- and three-qubit states with real parameters, we have derived the controlled remote state preparation protocols for arbitrary real-parameter multi-qubit states.

Keywords

Controlled remote state preparation Real-parameter multi-qubit states Maximal slice states Successful probability 

Notes

Acknowledgements

This work is supported by the Program for National Natural Science Foundation of China (Grant No. 61803382), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No. 2018M643869).

References

  1. 1.
    Dong, C., Zhao, S.H., Zhao, W.H.: Analysis of measurement-device-independent quantum key distribution under asymmetric channel transmittance efficiency. Quantum. Inf. Process. 13, 2525 (2014)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Dong, C., Zhao, S.H., Zhang, N., et al.: Measurement-device-independent quantum key distribution with odd coherent state. Acta. Phys. Sin. 61, 1246 (2014)Google Scholar
  3. 3.
    Dong, C., Zhao, S.H., Shi, L., et al.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93, 032320 (2016)ADSGoogle Scholar
  4. 4.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. Phys. Rev. Lett. 94, 150502 (2005)ADSGoogle Scholar
  5. 5.
    Dai, H.Y., Chen, P.X., Zhang, M., et al.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)ADSGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Xia, Y., Song, J., Lu, P.M., et al.: Effective quantum teleportation of an atomic state between two cavities with the cross Kerr nonlinearity by interference of polarized photons. J. Appl. Phys. 109, 103111 (2011)ADSGoogle Scholar
  8. 8.
    Lo, H.K.: Classical communication cost in distributed quantum information processing - a generalization of quantum communication complexity. Phys. Rev. A 62, 12313 (2000)ADSGoogle Scholar
  9. 9.
    Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSzbMATHGoogle Scholar
  10. 10.
    Dai, H.Y., Zhang, M., Kuang, L.M.: Teleportation of the three-level three-particle entangled state and classical communication cost. Phys. A 387, 3811 (2008)Google Scholar
  11. 11.
    Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)ADSzbMATHGoogle Scholar
  12. 12.
    Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284, 5853 (2011)ADSGoogle Scholar
  13. 13.
    Jiang, M., Dong, D.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45, 205506 (2012)ADSGoogle Scholar
  14. 14.
    Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524 (2013)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)ADSzbMATHGoogle Scholar
  16. 16.
    Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B 44, 075501 (2011)ADSGoogle Scholar
  17. 17.
    Wei, J.H., Shi, L., Ma, L.H., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum. Inf. Process. 16, 260 (2017)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, Z.Y., Liu, Y.M., Zuo, X.Q., et al.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)ADSzbMATHGoogle Scholar
  19. 19.
    Hou, K., Wang, J., Yuan, H., et al.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)ADSzbMATHGoogle Scholar
  20. 20.
    Chen, X.B., Ma, S.Y., Yuan, S.Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653 (2012)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)ADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    Wei, J.H., Shi, L., Xu, Z.Y., et al.: Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties. Int. J. Quant. Inf. 16, 1850001 (2018)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liao, Y.M., Zhou, P., Qin, X.C., et al.: Controlled remote preparing of an arbitrary 2-Qudit State with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61, 315 (2014)ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qubit state via positive operator-valued measurement. Int. J. Quantum Inf. 10, 1250062 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Wang, D., Ye, L.: Multi party-controlled joint remote preparation. Quantum Inf. Process. 12, 3223 (2013)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Wang, D., Huang, A.J., Sun, W.Y., et al.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 141 (2018)ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Louis, S.G.R., Nemoto, K., Munro, W.J., et al.: Weak nonlinearities and cluster states. Phys. Rev. A 75, 042323 (2007)ADSGoogle Scholar
  29. 29.
    Lee, J., Park, J., Lee, S., et al.: Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields. Phys. Rev. A 77, 32327 (2008)ADSGoogle Scholar
  30. 30.
    Zheng, A., Li, J., Yu, R., et al.: Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process. Optics Express. 20, 16902 (2012)ADSGoogle Scholar
  31. 31.
    Lin, Y., Gaebler, J.P., Reiter, F., et al.: Preparation of entangled states through Hilbert space engineering. Phys. Rev. Lett. 117, 14 (2016)Google Scholar
  32. 32.
    Liu, J., Mo, Z.W., Sun, S.Q.: Controlled dense coding using the maximal slice states. Int. J. Theor. Phys. 55, 2182 (2016)zbMATHGoogle Scholar
  33. 33.
    Wei, J.H., Shi, L., Zhao, S.H., et al.: Multi-parties controlled dense coding via maximal slice states and the physical realization using the optical elements. Int. J. Theor. Phys. 57, 1479 (2018)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Nielsen, M. A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  35. 35.
    Bonato, C., Haupt, F., Oemrawsingh, S., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSGoogle Scholar
  36. 36.
    Andrianov, S.N., Arslanov, N.M., Gerasimov, K.I., et al.: CNOT gate on reverse photon modes in ring cavity (2019)Google Scholar
  37. 37.
    Riebe, M., Kim, K., Schindler, P., et al.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)ADSGoogle Scholar
  38. 38.
    Ai, L.Y., Yang, J., Zhang, Z.M.: Generation of c-NOT gate, swap gate and phase gate based on a two-dimensional ion trap. Acta Phys. Sin. 57, 5589 (2008)Google Scholar
  39. 39.
    Labs, H.P.: A near deterministic linear optical CNOT gate. Physics (2009)Google Scholar
  40. 40.
    Shehab, O.: All optical XOR, CNOT gates with initial insight for quantum computation using linear optics. Proc. SPIE Int. Soc. Opt. Eng. 8400, 13 (2012)ADSGoogle Scholar
  41. 41.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Arbitrary remote state preparation of photon polarization. In: Quantum Electronics & Laser Science Conference. IEEE (2005)Google Scholar
  42. 42.
    Lan, Z., Kuang, L.M.: Linear optical implementation for quantum teleportation of unknown two-qubit entangled states. Chin. Phys. Lett. 21, 2101 (2004)ADSGoogle Scholar
  43. 43.
    Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nature. Phys. 2, 678 (2006)ADSGoogle Scholar
  44. 44.
    Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 6 (2018)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Information and Navigation CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China
  2. 2.Equipment Management and UAV Engineering CollegeAir Force Engineering UniversityXi’anPeople’s Republic of China

Personalised recommendations