Deterministic Controlled Remote State Preparation of Real-Parameter Multi-Qubit States via Maximal Slice States
Abstract
By exploiting three-qubit entangled states and appropriate measurement basis, we propose efficient protocols for deterministic controlled remote state preparation of arbitrary real-parameter multi-qubit states, in which the maximal slice states are used as quantum channel. The successful probability of our schemes can reach up to 100% by using multi-qubit mutually orthogonal measurement basis without the introduction of auxiliary particles. Based on the implementation schemes for preparing arbitrary two- and three-qubit states with real parameters, we have derived the controlled remote state preparation protocols for arbitrary real-parameter multi-qubit states.
Keywords
Controlled remote state preparation Real-parameter multi-qubit states Maximal slice states Successful probabilityNotes
Acknowledgements
This work is supported by the Program for National Natural Science Foundation of China (Grant No. 61803382), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No. 2018M643869).
References
- 1.Dong, C., Zhao, S.H., Zhao, W.H.: Analysis of measurement-device-independent quantum key distribution under asymmetric channel transmittance efficiency. Quantum. Inf. Process. 13, 2525 (2014)ADSMathSciNetzbMATHGoogle Scholar
- 2.Dong, C., Zhao, S.H., Zhang, N., et al.: Measurement-device-independent quantum key distribution with odd coherent state. Acta. Phys. Sin. 61, 1246 (2014)Google Scholar
- 3.Dong, C., Zhao, S.H., Shi, L., et al.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93, 032320 (2016)ADSGoogle Scholar
- 4.Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. Phys. Rev. Lett. 94, 150502 (2005)ADSGoogle Scholar
- 5.Dai, H.Y., Chen, P.X., Zhang, M., et al.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)ADSGoogle Scholar
- 6.Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetzbMATHGoogle Scholar
- 7.Xia, Y., Song, J., Lu, P.M., et al.: Effective quantum teleportation of an atomic state between two cavities with the cross Kerr nonlinearity by interference of polarized photons. J. Appl. Phys. 109, 103111 (2011)ADSGoogle Scholar
- 8.Lo, H.K.: Classical communication cost in distributed quantum information processing - a generalization of quantum communication complexity. Phys. Rev. A 62, 12313 (2000)ADSGoogle Scholar
- 9.Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSzbMATHGoogle Scholar
- 10.Dai, H.Y., Zhang, M., Kuang, L.M.: Teleportation of the three-level three-particle entangled state and classical communication cost. Phys. A 387, 3811 (2008)Google Scholar
- 11.Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)ADSzbMATHGoogle Scholar
- 12.Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284, 5853 (2011)ADSGoogle Scholar
- 13.Jiang, M., Dong, D.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45, 205506 (2012)ADSGoogle Scholar
- 14.Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524 (2013)ADSMathSciNetzbMATHGoogle Scholar
- 15.Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)ADSzbMATHGoogle Scholar
- 16.Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B 44, 075501 (2011)ADSGoogle Scholar
- 17.Wei, J.H., Shi, L., Ma, L.H., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum. Inf. Process. 16, 260 (2017)ADSMathSciNetzbMATHGoogle Scholar
- 18.Wang, Z.Y., Liu, Y.M., Zuo, X.Q., et al.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)ADSzbMATHGoogle Scholar
- 19.Hou, K., Wang, J., Yuan, H., et al.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)ADSzbMATHGoogle Scholar
- 20.Chen, X.B., Ma, S.Y., Yuan, S.Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653 (2012)ADSMathSciNetzbMATHGoogle Scholar
- 21.Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)ADSMathSciNetzbMATHGoogle Scholar
- 22.Wei, J.H., Shi, L., Xu, Z.Y., et al.: Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties. Int. J. Quant. Inf. 16, 1850001 (2018)MathSciNetzbMATHGoogle Scholar
- 23.Liao, Y.M., Zhou, P., Qin, X.C., et al.: Controlled remote preparing of an arbitrary 2-Qudit State with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61, 315 (2014)ADSMathSciNetzbMATHGoogle Scholar
- 24.Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qubit state via positive operator-valued measurement. Int. J. Quantum Inf. 10, 1250062 (2012)MathSciNetzbMATHGoogle Scholar
- 25.Wang, D., Ye, L.: Multi party-controlled joint remote preparation. Quantum Inf. Process. 12, 3223 (2013)ADSMathSciNetzbMATHGoogle Scholar
- 26.Wang, D., Huang, A.J., Sun, W.Y., et al.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)ADSMathSciNetzbMATHGoogle Scholar
- 27.Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 141 (2018)ADSMathSciNetzbMATHGoogle Scholar
- 28.Louis, S.G.R., Nemoto, K., Munro, W.J., et al.: Weak nonlinearities and cluster states. Phys. Rev. A 75, 042323 (2007)ADSGoogle Scholar
- 29.Lee, J., Park, J., Lee, S., et al.: Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields. Phys. Rev. A 77, 32327 (2008)ADSGoogle Scholar
- 30.Zheng, A., Li, J., Yu, R., et al.: Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process. Optics Express. 20, 16902 (2012)ADSGoogle Scholar
- 31.Lin, Y., Gaebler, J.P., Reiter, F., et al.: Preparation of entangled states through Hilbert space engineering. Phys. Rev. Lett. 117, 14 (2016)Google Scholar
- 32.Liu, J., Mo, Z.W., Sun, S.Q.: Controlled dense coding using the maximal slice states. Int. J. Theor. Phys. 55, 2182 (2016)zbMATHGoogle Scholar
- 33.Wei, J.H., Shi, L., Zhao, S.H., et al.: Multi-parties controlled dense coding via maximal slice states and the physical realization using the optical elements. Int. J. Theor. Phys. 57, 1479 (2018)MathSciNetzbMATHGoogle Scholar
- 34.Nielsen, M. A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
- 35.Bonato, C., Haupt, F., Oemrawsingh, S., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSGoogle Scholar
- 36.Andrianov, S.N., Arslanov, N.M., Gerasimov, K.I., et al.: CNOT gate on reverse photon modes in ring cavity (2019)Google Scholar
- 37.Riebe, M., Kim, K., Schindler, P., et al.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)ADSGoogle Scholar
- 38.Ai, L.Y., Yang, J., Zhang, Z.M.: Generation of c-NOT gate, swap gate and phase gate based on a two-dimensional ion trap. Acta Phys. Sin. 57, 5589 (2008)Google Scholar
- 39.Labs, H.P.: A near deterministic linear optical CNOT gate. Physics (2009)Google Scholar
- 40.Shehab, O.: All optical XOR, CNOT gates with initial insight for quantum computation using linear optics. Proc. SPIE Int. Soc. Opt. Eng. 8400, 13 (2012)ADSGoogle Scholar
- 41.Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Arbitrary remote state preparation of photon polarization. In: Quantum Electronics & Laser Science Conference. IEEE (2005)Google Scholar
- 42.Lan, Z., Kuang, L.M.: Linear optical implementation for quantum teleportation of unknown two-qubit entangled states. Chin. Phys. Lett. 21, 2101 (2004)ADSGoogle Scholar
- 43.Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nature. Phys. 2, 678 (2006)ADSGoogle Scholar
- 44.Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)MathSciNetzbMATHGoogle Scholar
- 45.Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 6 (2018)ADSMathSciNetzbMATHGoogle Scholar