International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4025–4032 | Cite as

Quantum Multi-valued Byzantine Agreement Based on d-dimensional Entangled States

  • Qing-bin LuoEmail author
  • Kai-yuan Feng
  • Ming-hui Zheng


Byzantine agreement has always been an important research topic of distributed computing and has been widely applied to blockchain technology in recent years. We propose a quantum protocol for solving multi-valued detectable Byzantine agreement problem in this paper. Each general is firstly distributed a list that no one else knows based on d-dimensional entangled states. Then the n generals can reach an agreement in which t (where t < n/3) of them are disloyal by using these lists. Finally, it is proved that the list distribution process is secure, and the proposed protocol satisfies the definition of the multi-valued detectable Byzantine agreement.


Quantum protocol Byzantine agreement Multi-party computation Entangled state 



This work is supported by the Science-Technology Project from Hubei Provincial Department of Education (Grant No. Q20181902).


  1. 1.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM (JACM) 27(2), 228–234 (1980)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)CrossRefGoogle Scholar
  3. 3.
    Vukolic, M.: The Quest for Scalable Blockchain Fabric: Proof-of-work vs. BFT Replication. International Workshop on Open Problems in Network Security, pp. 112–125. Springer, Berlin (2015)Google Scholar
  4. 4.
    Cachin, C.: Architecture of the hyperledger blockchainfabric workshop on distributed cryp-tocurrencies and consensus ledgers (2016)Google Scholar
  5. 5.
    Androulaki, E., Barger, A., Bortnikov, V., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: EuroSys’ 18: Thirteenth EuroSys Conference 2018, April 23–26, 2018, Porto, Portugal, p 15. ACM, New York (2018).
  6. 6.
    Salah, K., Rehman, M.H., Nizamuddin, N., Al-Fuqaha, A.: Blockchain for AI: Review and open research challenges. IEEE Access. (2019)CrossRefGoogle Scholar
  7. 7.
    Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distrib. Comput. 1(1), 26–39 (1986)CrossRefGoogle Scholar
  8. 8.
    Fitzi, M., Garay, J.A., Maurer, U., Ostrovsky, R.: Minimal complete primitives for secure multi-party computation. In: Annual International Cryptology Conference Springer, Berlin, Heidelberg, 80–100 (2001)CrossRefGoogle Scholar
  9. 9.
    Fitzi, M., Gisin, N., Maurer, U.: Quantum solution to the Byzantine agreement problem. Phys. Rev. Lett. 87(21), 217901 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Cabello, A.: N-particle N-level singlet states: some properties and applications. Phys. Rev. Lett. 89(10), 100402 (2002)MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Cabello, A.: Supersinglets. J. Mod. Opt. 50(6-7), 1049–1061 (2003)MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    Cabello, A.: Solving the liar detection problem using the four-qubit singlet state. Phys. Rev. A 68(1), 012304 (2003)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Iblisdir, S., Gisin, N.: Byzantine agreement with two quantum-key-distribution setups. Phys. Rev. A 70(3), 034306 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Gaertner, S., Bourennane, M., Kurtsiefer, C., et al.: Experimental demonstration of a quantum protocol for Byzantine agreement and liar detection. Phys. Rev. Lett. 100(7), 070504 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101(20), 208901 (2008)CrossRefADSGoogle Scholar
  16. 16.
    Bourennane, M., Cabello, A., Zukowski, M.: Quantum Byzantine agreement with a single qutrit. arXiv:1001.1947 (2010)
  17. 17.
    Rahaman, R., Wieśniak, M., Żukowski, M.: Quantum Byzantine agreement via Hardy correlations and entanglement swapping. Phys. Rev. A 92(4), 042302 (2015)CrossRefADSGoogle Scholar
  18. 18.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, USA, pp. 160–164 (1982)Google Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game. In: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing. NewYork, pp. 218229 (1987)Google Scholar
  20. 20.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    Luo, Q.B., Yang, G.W., She, K., et al.: Quantum private comparison protocol with linear optics. Int. J. Theor. Phys. 55(12), 5336–5343 (2016)CrossRefGoogle Scholar
  22. 22.
    Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)CrossRefGoogle Scholar
  23. 23.
    Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186Google Scholar
  24. 24.
    Singh, A., Das, T., Maniatis, P., et al.: BFT protocols under fire. In: NSDI, vol. 8, pp. 189–204 (2008)Google Scholar
  25. 25.
    Sousa, J., Bessani, A., Vukolic, M.: A Byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 51–58 (2018)Google Scholar
  26. 26.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)Google Scholar
  28. 28.
    Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65, 022304 (2002)CrossRefADSGoogle Scholar
  29. 29.
    Luo, Q.B., Yang, G.W., She, K., et al.: Multi-party quantum private comparison protocol base on d-imensional entangle states. Quantum Inf. Process 13(10), 2343–2352 (2014)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Chang, Y., Tsai, C., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process 12(2), 1077–1088 (2013)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Gupta, M., Pathak, A., Srikanth, R., et al.: General circuits for indirecting and distributing measurement in quantum computation. International Journal of Quantum Information 5(04), 627–640 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Technology, School of Information EngineeringHubei Minzu UniversityEnshiChina
  2. 2.Guangxi Key Laboratory of Hybrid Computation and IC Design AnalysisGuangxi University for NationalitiesNanningChina

Personalised recommendations