Advertisement

A Note on the Relationship Between Genuinely Coherence and Generalized Entanglement Monotones

  • Jiahuan Qiao
  • Zong Wang
  • Jing WangEmail author
  • Ming Li
  • Shuqian Shen
  • Zhihao Ma
Article

Abstract

We find a one to one mapping between genuinely incoherent operations and special one-way local operations and classical communication(LOCC) for density matrices with full rank. We also define “generalized entanglement monotones” and “genuinely coherence monotones” under special one-way LOCC and genuinely incoherent operations respectively. Any entanglement monotone proposed by Vidal et al. is a generalized entanglement monotone. Any coherence monotone under incoherent operations is a genuinely coherence monotone. Furthermore, we clarify the relationship between generalized entanglement monotones and genuinely coherence monotones. We demonstrate that any generalized entanglement monotone of bipartite pure state is the lower bound of a suitable genuinely coherence monotone; any genuinely coherence monotone of a quantum state is the generalized entanglement monotone of the corresponding maximally correlated state.

Keywords

Quantum coherence Quantum entanglement LOCC 

Notes

Acknowledgments

This work is supported by the NSFC No.11775306, and 11701568; the Fundamental Research Funds for the Central Universities Grants No. 17CX02033A and 19CX02050A; the Shandong Provincial Natural Science Foundation No.ZR2016AQ06, and ZR2017BA019.

References

  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  3. 3.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Aberg, J.: Quantifying superposition, arXiv:quant-ph/0612146(2006)
  6. 6.
    Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Hu, M.L., Hu, X.Y., Wang, J.C., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Hillery, M.: Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Lostaglio, M., Jennings, D., Rudolph, T.: Thermodynamic resource theories, non-commutativity and maximum entropy principles. New J. Phys. 19, 043008 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Micadei, K., Rowlands, D.A., Pollock, F.A., Céleri, L.C., Serra, R.M., Modi, K.: Coherent measurements in quantum metrology. New J. Phys. 17, 023057 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Lloyd, S.: Quantum coherence in biological systems. J. Phys.: Conf. Ser. 302, 012037 (2011)Google Scholar
  15. 15.
    Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1–51 (2007)MathSciNetzbMATHGoogle Scholar
  16. 16.
    de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A 50, 045301 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Brandão, F.G.S.L., Gour, G.: Reversible framework for quantum resource theories. Phys. Rev. Lett. 115, 070503 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Qi, X., Gao, T., Yan, F.: Measuring coherence with entanglement concurrence. J. Phys. A: Math. Theor. 50, 285301 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhu, H., Ma, Z., Cao, Z., Fei, S.-M., Vedral, V.: Operational one-to-one mapping between coherence and entanglement measures. Phys. Rev. A 96, 032316 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Chitambar, E., Gour, G.: Comparision of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Vidal, G.: Entanglement monotones. J. Modern Opt. 47, 355 (2000)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Du, S., Bai, Z., Qi, X.: Coherence measures and optimal conversion for coherent states. Quantum Inf. Comput. 15, 1307 (2015)MathSciNetGoogle Scholar
  25. 25.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Gour, G.: Family of concurrence monotones and its applications. Phys. Rev. A 71, 012318 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Chin, S.: Generalized coherence concurrence and path distinguishability. J. Phys. A: Math. Theor. 50, 475302 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jiahuan Qiao
    • 1
  • Zong Wang
    • 1
  • Jing Wang
    • 1
    Email author
  • Ming Li
    • 1
    • 2
  • Shuqian Shen
    • 1
  • Zhihao Ma
    • 3
  1. 1.College of the ScienceChina University of PetroleumQingdaoChina
  2. 2.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.Math DepartmentShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations