Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 3973–3985 | Cite as

Mutually Unbiased Measurement Based Entanglement Witnesses

  • Tao LiEmail author
  • Le-Min Lai
  • Shao-Ming Fei
  • Zhi-Xi Wang
Article

Abstract

We study entanglement witness and present a construction of entanglement witnesses in terms of the mutually unbiased measurements (MUMs). These witnesses include the entanglement witnesses constructed from mutually unbiased bases (MUBs) as a special case. Comparing with the dimension dependence of MUBs, the witnesses can be always constructed from a complete set of d + 1 MUMs for any dimension d. We show that our witness can detect entanglement better than previous separability criterion given also by MUMs. And the approach can be experimentally implemented.

Keywords

Mutually unbiased measurement Entanglement witnesses 

Notes

Acknowledgments

This work is supported by the NSF of China under Grant No. 11675113, the Research Foundation for Youth Scholars of Beijing Technology and Business University QNJJ2017-03, the Research Foundation for Educational Reform of Beijing Technology and Business University (jg185101), Scientific Research General Program of Beijing Municipal Commission of Education (Grant No.KM201810011009), NSF of Beijing under No. KZ201810028042 and Beijing Natural Science Foundation (Grant No. Z190005).

References

  1. 1.
    Ekert, A.K.: . Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.-S., Peres, A.: . Phys. Rev. A 56, 1163 (1997)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: . Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Peres, A.: . Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Horodecki, M., Horodecki, P., Horodecki, R.: . Phys. Lett. A 223, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Horodecki, P.: . Phys. Lett. A 232, 333 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Rudolph, O.: . Phys. Rev. A 67, 032312 (2003)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, K., Wu, L.-A.: . Quantum Inf. Comput. 3, 193 (2003)MathSciNetGoogle Scholar
  10. 10.
    Horodecki, M., Horodecki, P., Horodecki, R.: . Open Syst. Inf. Dyn. 13, 103 (2006)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, K., Wu, L.A.: . Phys. Lett A 306, 14 (2002)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, K., Wu, L.A.: . Phys. Rev A 69, 022312 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Wocjan, P., Horodecki, M.: . Open Syst. Inf. Dyn. 12, 331 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Albeverio, S., Chen, K., Fei, S.M.: . Phys. Rev. A 68, 062313 (2003)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Guhne, O., Hyllus, P., Gittsovich, O., Eisert, J.: . Phys. Rev. Lett. 99, 130504 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    de Vicente, J.: . Quantum Inf. Comput. 7, 624 (2007)MathSciNetGoogle Scholar
  17. 17.
    de Vicente, J.: . J. Phys. A: Math. Theor. 41, 065309 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Terhal, B.M.: . Phys. Lett. A 271, 319 (2000)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Chruściński, D., Sarbicki, G., Wudarski, F.: . Phys. Rev. A 97, 032318 (2018)ADSCrossRefGoogle Scholar
  20. 20.
    Wootters, W.K., Fields, B.D.: . Ann. Phys. (NY) 191, 363 (1989)ADSCrossRefGoogle Scholar
  21. 21.
    Kalev, A., Gour, G.: . New J. Phys. 16, 053038 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Bengtsson, I., Żczkowski: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  23. 23.
    Bertlmann, R.A., Durstberger, K., Hiesmayr, B.C., Krammer, P.: . Phys. Rev. A 72, 052331 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, B., Ma, T., Fei, S.M.: . Phys. Rev. A 89, 064302 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Brierley, S., Weigert, S.: . Phys. Rev. A 78, 042312 (2008)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Brierley, S., Weigert, S.: . Phys. Rev. A 79, 052316 (2009)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Raynal, P., Lu, X., Englert, B.-G.: . Phys. Rev. A 83, 062303 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    McNulty, D., Weigert, S.: . J. Phys A: Math. Theor. 45, 102001 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: . Phys. Rev. A 86, 022311 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsBeijing Technology and Business UniversityBeijingChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.Max Planck Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations