Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3945–3951 | Cite as

Quantum Codes Obtained from Constacyclic Codes

  • Habibul Islam
  • Om PrakashEmail author
  • Dipak Kumar Bhunia
Article

Abstract

In this article, by using Hermitian construction, we obtain several new quantum codes and quantum MDS codes compare to the known codes from the constacyclic codes with only one q2-cyclotomic coset containing at least two consecutive integers with arbitrary difference r but fixed. This work is the generalization of the recent study on quantum codes from cyclic codes by La Guardia (Int. J. Theor. Phys. 56(8): 2479–2484, 2017) and from negacyclic codes by Gao and Wang (Int. J. Theor. Phys. 57(3): 682–686, 2018), respectively.

Keywords

Constacyclic code Cyclotomic coset Quantum code MDS code 

Notes

Acknowledgments

The authors are thankful to the University Grants Commission (UGC), Govt. of India for financial support and Indian Institute of Technology Patna for providing research facilities. The authors would like to thank the anonymous referee(s) for their careful reading and valuable comments, which helped to improve the presentation of the manuscript.

References

  1. 1.
    Ashraf, M., Mohammad, G.: Quantum codes over \(\mathbb {F}_{p}\) from cyclic codes over \(\mathbb {F}_{p}[u,v]/\langle u^{2}-1,v^{3}-v,uv-vu\rangle \). Cryptogr. Commun. 11(2), 325–335 (2019)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Calderbank, A.R., Rains, E.M., Shor, P.M., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inform. Theory. 44, 1369–1387 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, B., Ling, S., Zhang, G.: Application of constacyclic codes to quantum MDS codes. IEEE Trans. Inform. Theory. 61, 1474–1484 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dertli, A., Cengellenmis, Y., Eren, S.: On quantum codes obtained from cyclic codes over A 2. Int. J. Quantum Inf. 13(3), 1550031 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gao, J.: Quantum codes from cyclic codes over \(\mathbb {F}_{q}+v\mathbb {F}_{q}+v^{2}\mathbb {F}_{q}+v^{3}\mathbb {F}_{q}\). Int. J. Quantum Inf. 13(8), 1550063(1-8) (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Gao, J., Wang, Y.: u-Constacyclic codes over \(\mathbb {F}_{p}+u\mathbb {F}_{p}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17(1), 9 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Gao, J., Wang, Y.: Quantum codes derived from negacyclic codes. Int. J. Theor. Phys. 57(3), 682–686 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grassl, M., Beth, T.: On optimal quantum codes. Int. J. Quantum Inf. 2, 55–64 (2004)CrossRefGoogle Scholar
  9. 9.
    Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \(\mathbb {F}_{p}[u,v,w]/\langle u^{2}-1,v^{2}-1,w^{2}-1,uv-vu,vw-wv,wu-uw\rangle \). J. Appl. Math. Comput. 60(1–2), 625–635 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inform. Theory. 60(4), 2080–2085 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inform. Theory. 52(11), 4892–4914 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    La Guardia, G.G., Palazzo, R. Jr: Constructions of new families of nonbinary CSS codes. Discrete Math. 310, 2935–2945 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inform. Theory. 57 (8), 5551–5554 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inform. Theory. 60(3), 1528–1535 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    La Guardia, G.G.: Quantum codes derived from cyclic codes. Int. J. Theor. Phys. 56(8), 2479–2484 (2017)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Li, R., Lv, L., Ma, M.: A class of constacyclic BCH codes and new quantum codes. Quantum Inf Process. 16(3), 16 (2017)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ma, F., Gao, J., Fu, F.W.: Constacyclic codes over the ring \(\mathbb {F}_{p} +v\mathbb {F}_{p}+v^{2}\mathbb {F}_{p}\) and their applications of constructing new non-binary quantum codes. Quantum Inf Process. 17(6), 19 (2018)CrossRefGoogle Scholar
  18. 18.
    Qian, J., Ma, W., Gou, W.: Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)CrossRefGoogle Scholar
  19. 19.
    Shor, P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52, 2493–2496 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    Taneja, D., Gupta, M., Narula, R., Bhullar, J.: Construction of new quantum MDS codes derived from constacyclic codes. Int. J. Quantum Inf. 15(1), 1750008 (2017)CrossRefGoogle Scholar
  21. 21.
    Wang, L., Zhu, S.: New quantum MDS codes derived from constacyclic codes. Quantum Inf Process. 14(3), 881–889 (2015)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Yang, Y., Cai, W.: On self-dual constacyclic codes over finite fields. Des. Codes Cryptogr. 74(2), 355–364 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations