Discrete-Time Quantum Walk with Memory on the Cayley Graph of the Dihedral Group


By adding one-step memory to enrich the model of discrete-time quantum walk on the Caylay graph of the dihedral group, the model of quantum walk with memory on the Cayley graph of the dihedral group is constructed. The Fourier Transform is used to analyze the walk, and a formula for probability distribution and time-average probability distribution is given. According to the one-to-one correspondence between quantum walk with memory on a regular graph and quantum walk without memory on the corresponding line digraph, the diagrammatic counterpart of quantum walk with one-step memory on the Cayley graph of the dihedral group is presented. Moreover, basic probabilistic properties of the proposed model are further studied using numerical simulation method. Furthermore, the similarities and differences are discussed in comparison to the memoryless model.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Shao, C., Li, Y., Li, H.: Quantum algorithm design: techniques and applications[J]. J. Syst. Sci. Complex. 32(1), 375–452 (2019)

  2. 2.

    Kitaev, A.Y.: Quantum measurements and the Abelian stabilizer problem[J]. arXiv:quant-ph/9511026 (1995)

  3. 3.

    Gui-Lu, L.: General quantum interference principle and duality computer[J]. Commun. Theor. Phys. 45(5), 825 (2006)

  4. 4.

    Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations[J]. Phys. Rev. Lett. 103(15), 150502 (2009)

  5. 5.

    Grover, L.K.: A fast quantum mechanical algorithm for database search[J]. arXiv:quant-ph/9605043 (1996)

  6. 6.

    Childs, A.M.: Universal computation by quantum walk[J]. Phys. Rev. Lett. 102 (18), 180501 (2009)

  7. 7.

    Yang, Y.G., Zhang, Y.C., Xu, G., et al.: Improving the efficiency of quantum hash function by dense coding of coin operators in discrete-time quantum walk[J]. Sci. China Phys. Mech. Astron. 61(3), 030312 (2018)

  8. 8.

    Zhang, L., Chen, N., Zhu, C., et al.: Estimating average fidelity error based on local random quantum circuits[J]. EPL (Europhys. Lett.) 125(4), 40002 (2019)

  9. 9.

    Wang, M., Wu, R., Lin, J., et al.: Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Eng. 1(1), e9 (2019)

  10. 10.

    Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins[J]. Phys. Rev. A 67(5), 125–128 (2002)

  11. 11.

    Flitney, A.P., Abbott, D., Johnson, N.F.: Quantum walks with history dependence[J]. J. Phys. Gen. Phys. 37(30), 7581–7591 (2004)

  12. 12.

    Segawa, E., Konno, N.: Limit theorems for quantum walks driven by many coins[J]. Int. J. Quantum Inf. 6(06), 1231–1243 (2008)

  13. 13.

    McGettrick, M.: One dimensional quantum walks with memory[J]. Quantum Inf. Comput. 10(5), 509–524 (2009)

  14. 14.

    Konno, N., Machida, T.: Limit theorems for quantum walks with memory[J]. arXiv:1004.0443 (2010)

  15. 15.

    Rohde, P.P., Brennen, G.K., Gilchrist, A.: Quantum walks with memory provided by recycled coins and a memory of the coin-flip history[J]. Phys. Rev. A 87 (5), 222–232 (2013)

  16. 16.

    Gettrick, M.M., Miszczak, J.A.: Quantum walks with memory on cycles[J]. Phys. Stat. Mech. Appl. 399(4), 163–170 (2014)

  17. 17.

    Li D, Mc Gettrick M, Gao F, et al.: Generic quantum walks with memory on regular graphs[J]. Physical Review A 94(4), 042323 (2016)

  18. 18.

    Acevedo, O.L., Gobron, T.: Quantum walks on Cayley graphs[J]. J. Phys. A Math. Gen. 39(3), 585 (2005)

  19. 19.

    Bisio, A., D’Ariano, G.M., Erba, M., et al.: Quantum walks with a one-dimensional coin[J]. Phys. Rev. A 93(6), 062334 (2016)

  20. 20.

    D’Ariano, G.M., Erba, M., Perinotti, P., et al.: Virtually Abelian quantum walks[J]. J. Phys. A: Math. Theor. 50(3), 035301 (2016)

  21. 21.

    Dai, W., Yuan, J., Li, D.: Discrete-time quantum walk on the Cayley graph of the dihedral group[J]. Quantum Inf. Process 17(12), 330 (2018)

Download references


This work was supported by the National Natural Science Foundation of China(Grant Nos. 61571226, 61701229, 61572053, 61702367), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802), Postdoctoral Science Foundation funded Project of China (Grant Nos. 2018M630557, 2018T110499), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1701139B), the Beijing Natural Science Foundation (Grant No. 4162005), the Research Project of Tianjin Municipal Commission of Education(Grant No. 2017KJ033).

Author information

Correspondence to Wenjing Dai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Yuan, J. & Li, D. Discrete-Time Quantum Walk with Memory on the Cayley Graph of the Dihedral Group. Int J Theor Phys 59, 10–28 (2020) doi:10.1007/s10773-019-04257-7

Download citation


  • Discrete-time quantum walk
  • The Caylay graph of the dihedral group
  • With memory
  • Fourier transform
  • Probability distribution
  • Regular graph
  • Line digraph
  • Numerical simulation