Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3863–3870 | Cite as

An Efficient Quantum Sealed Bidding Auction Scheme Based on the Correlation of Genuine Five-Qubit Entangled State

  • Man-Mang Xue
  • Jian-Zhong ZhangEmail author
  • Shu-Cui Xie
Article

Abstract

In this paper, an efficient quantum sealed bidding auction scheme based on genuine five-qubit entangled state is proposed. The scheme utilizes the correlation of quantum entangled states to transmit bidding information. It can use an entangled state to transmit two bits of bidding information, which greatly improves the transmission efficiency. In order to avoid collusion between bidders and auctioneer, we introduce a semi-trusted third party Trent. His supervision during the whole auction process can help participants trust each other and reduce the possibility of internal attacks. Finally, the security of the scheme is proved, and the scheme is more economical and feasible.

Keywords

Sealed bidding auction scheme Five-qubit entangled state Quantum measurement 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM6263, 2016JM6069), the Fundamental Research Funds for the Central Universities(Grant No. GK201402004), and the National Natural Science Foundation of China (Grant No. 61802243), the Fundamental Research Funds for the Central Universities(Grant No. 2019CSLZ001).

References

  1. 1.
    Gisin, N., Ribordy, G, Tittel, W., et al.: Quantum cryptography. Rev. Mod. phys. 74(1), 145–195 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of IEEE International Conference on Computer Systems and Signal Processing, Bangalore, pp. 175–179 (1984)Google Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Chen, X.B., Wang, T.Y., Du, J.Z., et al.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(3), 543–551 (2008)CrossRefGoogle Scholar
  8. 8.
    Chen, X.B., Wen, Q.Y., Guo, F.Z., et al.: Controlled quantum secure direct communication with W state. Int. J. Quantum Inf. 6(4), 899–906 (2008)CrossRefGoogle Scholar
  9. 9.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61(4), 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, X.B., Niu, X.X., Zhou, X.J., et al.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12(1), 365–380 (2013)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ma, T.H., Zhou, J.J., Tang, M.L., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M., Lee, S.: Social network and tag sources based augmenting collaborative recommender system. IEICE Trans. Inf. Syst. 98(4), 902–910 (2015)CrossRefGoogle Scholar
  13. 13.
    Xia, Z., Wang, X., Sun, X., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)CrossRefGoogle Scholar
  14. 14.
    Fu, Z., Sun, X., Liu, Q., et al.: Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans. Inf. Syst. 98(1), 190–200 (2015)CrossRefGoogle Scholar
  15. 15.
    Pan, Z., Zhang, Y., Kwong, S.: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans. Broadcast. 61 (2), 166–176 (2015)CrossRefGoogle Scholar
  16. 16.
    Xie, S., Wang, Y.: Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers. Commun. 78(1), 231–246 (2014)CrossRefGoogle Scholar
  17. 17.
    Kudo, M.: Secure electronic sealed-bid auction protocol with public key cryptography. IEICE Trans. Fundamentals 81(1), 20–27 (1998)MathSciNetGoogle Scholar
  18. 18.
    Juels, A., Szydlo, M.: A two-server, sealed-bid auction protocol. International Conference on Financial Cryptography 2357, 72–86 (2002)CrossRefGoogle Scholar
  19. 19.
    Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282(9), 1939–1943 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis and improvement of a secure quantum sealed-bid auction. Opt. Commun. 282(19), 4014–4016 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Yang, Y.G., Naseri, M., Wen, Q.Y.: Improved secure quantum sealed-bid auction. Opt. Commun. 282(20), 4167–4170 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Zhao, Z.W., Naseri, M., Zheng, Y.Q.: Secure quantum sealed-bid auction with post-confirmation. Opt. Commun. 283(16), 3194–3197 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, Q.L., Zhang, W.W., Su, Q.: Revisiting “The loophole of the improved secure quantum Sealed-Bid auction with Post-Confirmation and solution”. Int. J. Quantum Inf. 53(9), 3147–3153 (2014)zbMATHGoogle Scholar
  24. 24.
    Liu, W.J., Wang, H.B., Yuan, G.L., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16(7), 169 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, G., Zhang, J.Z., Xie, S.C.: Multiparty Sealed-Bid auction protocol based on the correlation of Four-Particle entangled state. Int. J. Theor. Phys. 57(10), 3141–3148 (2018)CrossRefGoogle Scholar
  27. 27.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A. 75(5), 052306 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Laflamme, R., Miquel, C., Paz, J.P., et al.: Perfect quantum error correcting code. Phys. Rev. Lett. 77(1), 198–201 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations