International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3765–3772 | Cite as

The Phase Transition in Two-Photon Rabi Model Under Mean Field Approximation

  • Xian-Lei HuEmail author


The two-photon Rabi model describes the interaction between a two-level system and a single bosonic mode via two-photon process. By means of mean-field approximation, we investigate the quantum phase transition, which corresponds to a jump from the single well to double well structure for the energy function in the ultra-strong coupling regime. Taking the classical limit for the atom (two-level system) partner, we also study the squeezing of the cavity field in both of the normal and super-radiance phases.


Quantum phase transition Mean field approximation Rabi model Squeezed state 



  1. 1.
    Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51, 89 (1963)CrossRefGoogle Scholar
  2. 2.
    Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Ripoll, J.J.G., Zueco, D., Hummer, T., Solano, E., Marx, A., Gross, R.: Nat. Phys. 6, 772 (2010)CrossRefGoogle Scholar
  3. 3.
    Todorov, Y., Andrews, A.M., Colombelli, R., De Liberato, S., Ciuti, C., Klang, P., Strasser, G., Sirtori, C.: Phys. Rev. Lett. 105, 196402 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Geiser, M., Castellano, F., Scalari, G., Beck, M., Nevou, L., Faist, J.: Phys. Rev. Lett. 108, 106402 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Cacciola, A., Stefano, O.D., Stassi, R., Saija, R., Savasta, S.: ACS Nano. 8, 11483 (2014)CrossRefGoogle Scholar
  6. 6.
    Baust, A., et al.: Phys. Rev. B 93, 214501 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Dlaz, P.F., Garcla-Ripoll, J.J., Peropadre, B., Orgiazzi, J.-L., Yurtalan, M.A., Belyansky, R., Wilson, C.M., Lupascu, A.: Nat. Phys. 13, 39 (2017)CrossRefGoogle Scholar
  8. 8.
    Yoshihara, F., Fuse, T., Ashhab, S., Kakuyanagi, K., Saito, S., Semba, K.: Nat. Phys. 13, 44 (2017)CrossRefGoogle Scholar
  9. 9.
    Gu, X., Kockum, A.F., Gu, A., Liu, Y.-X., Nori, F.: Miranowicz Physics Reports 718, 1 (2017)ADSGoogle Scholar
  10. 10.
    Hwang, M.J., Puebla, R., Plenio, M.B.: Phys. Rev. Lett. 115, 180404 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Hwang, M.J., Plenio, M.B.: Phys. Rev. Lett. 117, 123602 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, M., Chesi, S., Ying, Z.J., Chen, X.S., Luo, H.G., Lin, H.Q.: Phys. Rev. Lett. 119, 220601 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Travěnec, I.: Phys. Rev. A 85, 043805 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Felicetti, S., Pedernales, J.S., Egusquiza, I.L., Romero, G., Lamata, L., Braak, D., Solano, E.: Phys. Rev. A 92, 033817 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Garbe, L., Egusquiza, I.L., Solano, E., Ciuti, C., Coudreau, T., Milman, P., Felicetti, S.: Phys. Rev. A 95, 053854 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Bertet, P., Osnaghi, S., Milman, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Phys. Rev. Lett. 88, 143601 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, X.F., Sun, Q., Wen, Y.C., Liu, W.M., Eggert, S., Ji, A.C.: Phys. Rev. Lett. 110, 090402 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Stufler, S., Machnikowski, P., Ester, P., Bichler, M., Axt, V.M., Kuhn, T., Zrenner, A.: Phys. Rev. B 73, 125304 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    del Valle, E., Zippilli, S., Laussy, F.P., Gonzalez-Tudela, A., Morigi, G., Tejedor, C.: Phys. Rev. B 81, 035302 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Chen, Q.H., Wang, C., He, S., Liu, T., Wang, K.L.: Phys. Rev. A 86, 023822 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Duan, L.W., Xie, Y.F., Braak, D., Chen, Q.H.: J. Phys. A 49, 464002 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Peng, J., Ren, Z.Z., Guo, G.J., Ju, G.X., Guo, X.Y.: Eur. Phys. J. D 67, 162 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Lv, Z.G., Zhao, C.J., Zheng, H.: J. Phys. A 50, 074002 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Chen, X.Y., Zhang, Y.Y.: Phys. Rev. A 97, 053821 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Emary, C., Brandes, T.: Phys. Rev. E 67, 066203 (2003)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Chen, Q.H., Zhang, Y.Y., Liu, T., Wang, K.L.: Phys. Rev. A 78, 051801 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Bakemeier, L., Alvermann, A., Fehske, H.: Phys. Rev. A 85, 043821 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Gazeau, J.P.: Coherent States in Quantum Physics. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  29. 29.
    Walls, D.F.: Nature(London) 306, 141 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    Barnett, S., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford University Press, Oxford (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center of Quantum Effects and ApplicationsHunan Normal UniversityChangshaChina

Personalised recommendations