International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3726–3733 | Cite as

On-Chip Multiphoton Entangled States by Path Identity

  • Tianfeng FengEmail author
  • Xiaoqian ZhangEmail author
  • Yuling Tian
  • Qin Feng


Multiphoton entanglement, as a quantum resource, plays an essential role in linear optical quantum information processing. Krenn et al. (Phys. Rev. Lett. 118, 080401 2017) proposed an innovative scheme that generating entanglement by path identity, in which two-photon interference (called Hong-Ou-Mandel effect) is not necessary in experiment. However, the experiments in this scheme have strict requirements in stability and scalability, which is difficult to be realized in bulk optics. To solve this problem, in this paper we first propose an on-chip scheme to generate multi-photon polarization entangled states, including Greenberger-Horne-Zeilinger (GHZ) states and W states. Moreover, we also present a class of generalized graphs for W states (odd-number-photon) by path identity in theory. The on-chip scheme can be implemented in existing integrated optical technology which is meaningful for multi-party entanglement distribution in quantum communication networks.


Multiphoton entanglement On-chip Greenberger-Horne-Zeilinger states W states 



The research is funded by Project supported by the National Science Foundation of Guangdong Province, China (Grant No.2016A030312012).


  1. 1.
    Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Blatt, R., Wineland, D.: Entangled states of trapped atomic ions. Nature 453, 1008 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multi-photon entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)CrossRefGoogle Scholar
  9. 9.
    Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)CrossRefGoogle Scholar
  10. 10.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., Aspuru-Guzik, A., White, A.G.: Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010)CrossRefGoogle Scholar
  12. 12.
    Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Alán, A.G., Walther, P.: Photonic quantum simulators. Nat. Physics 8, 285 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434, 169 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Qiang, X., Zhou, X., Wang, J., Wilkes, C.M., Loke, T., O’Gara, S., Kling, L., Marshall, G.D., Santagati, R., Ralph, T.C., Wang, J.B., O’Brien, J.L., Thompson, M.G., Matthews, J.C.F.: Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12, 534 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    Yao, X.-C., Wang, T.-X., Xu, P., Lu, H., Pan, G.-S., Bao, X.-H., Peng, C.-Z., Lu, C.-Y., Chen, Y.-A., Pan, J.-W.: Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., Lu, H., Hu, Y., Jiang, X., Peng, C.-Z., Li, L., Liu, N.-L., Chen, Y.-A., Lu, C.-Y., Pan, J.-W.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Zhong, H.-S., Li, Y., Li, W., Peng, L.-C., Su, Z.-E., Hu, Y., He, Y.- M., Ding, X., Zhang, W.-J., Li, H., Zhang, L., Wang, Z., You, L.-X., Wang, X.-L., Jiang, X., Li, L., Chen, Y.-A., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Ou, Z.Y., Mandel, L.: Violation of bell’s inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50 (1988)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Adcock, J.C., Vigliar, C., Santagati, R., Silverstone, J.W., Thompson, M.G.: Programmable four-photon graph states on a silicon chip. arXiv:1811.03023v1 (2018)
  23. 23.
    Krenn, M., Hochrainer, A., Lahiri, M., Zeilinger, A.: Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Zou, X.Y., Wang, L.J., Mandel, L.: Induced coherence and indistinguishability in optical interference. Phys. Rev. Lett. 67, 318 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Moreno, M., Cunha, M., Parisio, F.: Remote preparation of W states from imperfect bipartite sources. Quantum Inf. Process 15(9), 1–11 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rangarajan, R., Goggin, M., Kwiat, P.: Optimizing type-I polariza-tion-entangled photons. Opt. Express 17(21), 18920–18933 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Niu, X.L., Huang, Y.F., Xiang, G.Y., Guo, G.C., Ou, Z.Y.: Beamlike high-brightness source of polarization-entangled photon pairs. Opt. Lett. 33, 968 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Lahiri, M.: Many-particle interferometry and entanglement by path identity. Phys. Rev. A 98, 033822 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    Krenn, M., Gu, X., Zeilinger, A.: Quantum experiments and graphs: Multiparty states as coherent superpositions of perfect matchings. Phys. Rev. Lett. 119, 240403 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    Gu, X., Erhard, M., Zeilinger, A., Krenn, M.: Quantum Experiments and Graphs II: Computation and State Generation with Probabilistic Sources and Linear Optics. arXiv:1803.10736 (2018)
  32. 32.
    Gu, X., Chen, L., Zeilinger, A., Krenn, M.: Quantum experiments and graphs III: high-dimensional and multi-particle entanglement. arXiv:1812.09558 (2018)
  33. 33.
    Erhard, M., Malik, M., Krenn, M., Zeilinger, A.: Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits. Nat. Photonics 12, 759 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    Silverstone, J.W., Bonneau, D., Ohira, K., Suzuki, N., Yoshida, H., Iizuka, N., Ezaki, M., Natarajan, C.M., Tanner, M.G., Hadfield, R.H., Zwiller, V., Marshall, G.D., Rarity, J.G., O’Brien, J.L., Thompson, M.G.: On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8, 104 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Jin, H., Liu, F.M., Xu, P., Xia, J.L., Zhong, M.L., Yuan, Y., Zhou, J.W., Gong, Y.X., Wang, W., Zhu, S.N.: On-Chip Generation and manipulation of entangled photons based on reconfigurable Lithium-Niobate waveguide circuits. Phys. Rev. Lett. 113, 103601 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Faruque, I.I., Sinclair, G.F., Bonneau, D., Rarity, J.G., Thompson, M.G.: On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics. Opt. Express 26(16), 20379 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Olislager, L., Safioui, J., Clemmen, S., Huy, K.P., Bogaerts, W., Baets, R., Emplit, P., Massar, S.: Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett. 38, 1960 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Wang, J., Bonneau, D., Villa, M., Silverstone, J.W., Santagati, R., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M., Hadfield, R.H., O’Brien, J.L., Thompson, M.G.: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3(4), 407 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Gimeno-Segovia, M., Shadbolt, P., Browne, D.E., Rudolph, T.: From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett. 115(2), 020502 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430(6995), 54–58 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Dicke, R.H.: Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and State Key Laboratory of Optoelectronic Materials and TechnologiesSun Yat-sen UniversityGuangzhouChina
  2. 2.Department of Computer ScienceJinan UniversityGuangzhouChina

Personalised recommendations