International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3711–3725 | Cite as

Can Quantum Particles Cross a Horizon?

  • Merab GogberashviliEmail author


The prevalent opinion that infalling objects can freely cross a black hole horizon is based on the assumptions that the horizon region is governed by classical General Relativity and by specific singular coordinate transformations it is possible to remove divergences in the geodesic equations. However, the coordinate transformations usually used to demonstrate the geodesic completeness are of class C0, while the standard causality theory requires that the metric tensor to be at least C1. Introduction of C0-class functions leads to the appearance of the additional delta-like sources in the Einstein equations and in the equations for quantum particles. Therefore, to explore the horizon region, in addition to the classical geodesic equations, one needs to use equation of quantum particles. Applying physical boundary conditions at the Schwarzschild and Kerr event horizons, we show existence of the exponentially decay/enhanced solutions (with the complex phases) to the Klein-Gordon equation. This means that in semi-classical approximation particles probably do not enter the black hole horizon, but are absorbed/reflected by it. Then it follows that the minimal classical size of any isolated body is its horizon radius, what potentially can solve main black hole mysteries.


Black holes Singularities Fields in curved spacetime 



This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [DI-18-335/New Theoretical Models for Dark Matter Exploration].


  1. 1.
    Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996)Google Scholar
  2. 2.
    Senovilla, J.M.M., Garfinkle, D.: The Penrose singularity theorem. Class. Quant. Grav. 32, 124008 (2015). arXiv:1410.5226 [gr-qc]ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)zbMATHGoogle Scholar
  4. 4.
    Tangherlini, F.R.: Nonclassical structure of the energy-momentum tensor of a point mass source for the Schwarzschild field. Phys. Rev. Lett. 6, 147 (1961)ADSGoogle Scholar
  5. 5.
    Heinzle, J.M., Steinbauer, R.: Remarks on the distributional Schwarzschild geometry. J. Math. Phys. 43, 1493 (2002). arXiv:gr-qc/0112047 ADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    Castro, C.: The euclidean gravitational action as black hole entropy, singularities, and spacetime voids. J. Math. Phys. 49, 042501 (2008)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. Gen. Rel. Grav. 40, 1997 (2008). arXiv:gr-qc/0405109 ADSzbMATHGoogle Scholar
  8. 8.
    Mitra, A.: On the non-occurrence of type I x-ray bursts from the black hole candidates. Adv. Space Res. 38, 2917 (2006). arXiv:astro-ph/0510162 ADSGoogle Scholar
  9. 9.
    Mitra, A. In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.): Physical Implications for the Uniqueness of the Value of the Integration in the Vacuum Schwarzschild Solution, in The Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories. World Scientific, Singapore (2008)Google Scholar
  10. 10.
    Gogberashvili, M., Modrekiladze, B.: Gravitational field of a spherical perfect fluid. Eur. Phys. J. C 79, 643 (2019). arXiv:1805.03505 [physics.gen-ph]
  11. 11.
    Akiyama, K., et al.: [Event horizon telescope collaboration], First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. 875, L1 (2019)ADSGoogle Scholar
  12. 12.
    Abbott, B.P., et al.: [LIGO scientific and virgo collaborations], Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 [gr-qc]ADSMathSciNetGoogle Scholar
  13. 13.
    Chandrasekhar, S.: The mathematical theory of black holes. Clarendon, New York (1983)zbMATHGoogle Scholar
  14. 14.
    Carroll, S.: Spacetime and geometry: An introduction to general relativity. Addison-Wesley, San Francisco (2004)zbMATHGoogle Scholar
  15. 15.
    Poisson, E.: A relativist’s toolkit: The mathematics of black-hole mechanics. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  16. 16.
    Marolf, D.: The black hole information problem: Past, present, and future. Rep. Prog. Phys. 80, 092001 (2017). arXiv:1703.02143 [gr-qc]ADSGoogle Scholar
  17. 17.
    Giddings, S.B.: Black holes and massive remnants. Phys. Rev. D 46, 1347 (1992). arXiv:hep-th/9203059 ADSGoogle Scholar
  18. 18.
    Giddings, S.B.: Black hole information, unitarity, and nonlocality. Phys. Rev. D 74, 106005 (2006). arXiv:hep-th/0605196 ADSMathSciNetGoogle Scholar
  19. 19.
    Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: Complementarity or firewalls?. JHEP 1302, 062 (2013). arXiv:1207.3123 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Maldacena, J., Susskind, L.: Cool horizons for entangled black holes. Fortsch. Phys. 61, 781 (2013). arXiv:1306.0533 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
  21. 21., Simulating extreme space-times, 2018
  22. 22.
    Ha, Y.K.: External energy paradigm for black holes. Int. J. Mod. Phys. A 33, 1844025 (2018). arXiv:1811.02890 [physics.gen-ph]ADSGoogle Scholar
  23. 23.
    Gogberashvili, M., Pantskhava, L.: Black hole information problem and wave bursts. Int. J. Theor. Phys. 57, 1763 (2018). arXiv:1608.04595 [physics.gen-ph]MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gogberashvili, M.: On the singular coordinate transformations of the Schwarzschild metric. arXiv:1809.07173 [physics.gen-ph]
  25. 25.
    Minguzzi, E., Sanchez, M.: The Causal Hierarchy of Spacetimes in Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys. (Eur. Math. Soc. Publ, House, Zürich) (2008)Google Scholar
  26. 26.
    Clarke, C.J.S.: The analysis of spacetime singularities, Cambridge Lect Notes Phys, vol. 1. Cambridge University Press, Cambridge (1993)Google Scholar
  27. 27.
    García-Parrado, A., Senovilla, J.M.M.: Causal structures and causal boundaries. Class. Quant. Grav. 22, R1 (2005). arXiv:gr-qc/0501069 ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Chruściel, P.T.: Elements of causality theory. arXiv:1110.6706 [gr-qc]
  29. 29.
    Sorkin, R.D., Woolgar, E.: A causal order for spacetimes with C 0 Lorentzian metrics: Proof of compactness of the space of causal curves. Class. Quant. Grav. 13, 1971 (1996)ADSzbMATHGoogle Scholar
  30. 30.
    Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455 (1939)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Lichnerowicz, A.: Théories Relativistes de la Gravitation et de l Électromagnétisme. Relativité Générale et Théories Unitaires, Masson, Paris (1955)zbMATHGoogle Scholar
  32. 32.
    Synge, J.L.: Relativity: The general theory. North-Holland Publishing Company, Amsterdam (1960)zbMATHGoogle Scholar
  33. 33.
    Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 30, 701 (1998). arXiv:1801.04912 [gr-qc]ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: The C 0-stability of the Kerr Cauchy horizon. arXiv:1710.01722 [gr-qc]
  35. 35.
    Klainerman, S., Szeftel, J.: Global nonlinear stability of schwarzschild spacetime under polarized perturbations. arXiv:1711.07597 [gr-qc]
  36. 36.
    Khelashvili, A., Nadareishvili, T.: What is the boundary condition for the radial wave function of the Schrödinger equation?. Am. J. Phys. 79, 668 (2011). arXiv:1009.2694 [quant-ph]ADSzbMATHGoogle Scholar
  37. 37.
    Khelashvili, A., Nadareishvili, T.: Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates. Phys. Part. Nucl. Lett. 12, 11 (2015). arXiv:1502.04008 [hep-th]Google Scholar
  38. 38.
    Cantelaube, Y.C., Khelif, A.L.: Laplacian in polar coordinates, regular singular function algebra, and theory of distributions. J. Math. Phys. 51, 053518 (2010)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Jackson, J.D.: Classical electrodynamics. Wiley, New York (1999)zbMATHGoogle Scholar
  40. 40.
    Peshkin, M., Tonomura, A.: The Aharonov-Bohm effect. Springer, Berlin (1989). Lecture Notes in Physics (Book 340)Google Scholar
  41. 41.
    Dixon, W.G.: The definition of multipole moments for extended bodies. Gen. Rel. Grav. 4, 199 (1973)ADSMathSciNetGoogle Scholar
  42. 42.
    Goldstein, H.: Classical mechanics. Addison-Wesley, New York (1950)zbMATHGoogle Scholar
  43. 43.
    Motz, L., Selzer, A.: Quantum mechanics and the relativistic Hamilton-Jacobi equation. Phys. Rev. 133, B1622 (1964)ADSMathSciNetGoogle Scholar
  44. 44.
    Starobinskii, A.A.: Amplification of waves during reflection from a rotating ’black hole’. Sov. Phys. JETP 37, 28 (1973)ADSGoogle Scholar
  45. 45.
    Matzner, R.A.: Scattering of massless scalar waves by a Schwarzschild ’singularity’. J. Mat. Phys. 9, 163 (1968)ADSGoogle Scholar
  46. 46.
    Qin, Y.-P.: Exact solutions to the Klein-Gordon equation in the vicinity of Schwarzschild black holes. Sci. China: Phys. Mech. Astron. 55, 381 (2012)ADSGoogle Scholar
  47. 47.
    Damour, T., Ruffini, R.: Black-hole evaporation in the Klein-Sauter-Heisenberg-Euler formalism. Phys. Rev. D 14, 332 (1976)ADSGoogle Scholar
  48. 48.
    Sannan, S.: Heuristic derivation of the probability distributions of particles emitted by a black hole. Gen. Rel. Grav. 20, 239 (1988)ADSMathSciNetGoogle Scholar
  49. 49.
    Elizalde, E.: Series solutions for the Klein-Gordon equation in Schwarzschild space-time. Phys. Rev. D 36, 1269 (1987)ADSGoogle Scholar
  50. 50.
    Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Phys. Rev. D 60, 024007 (1999). arXiv:gr-qc/9812028 ADSMathSciNetGoogle Scholar
  51. 51.
    Akhmedov, E.T., Akhmedova, V., Singleton, D.: Hawking temperature in the tunneling picture. Phys. Lett. B 642, 124 (2006). arXiv:hep-th/0608098 ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Akhmedov, E.T., Akhmedova, V., Pilling, T., Singleton, D.: Thermal radiation of various gravitational backgrounds. Int. J. Mod. Phys. A 22, 1705 (2007). arXiv:hep-th/0605137 ADSzbMATHGoogle Scholar
  53. 53.
    Akhmedov, E.T., Pilling, T., Singleton, D.: Subtleties in the quasi-classical calculation of Hawking radiation. Int. J. Mod. Phys. D 17, 2453 (2008). arXiv:0805.2653 [gr-qc]ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Vieira, H.S., Bezerra, V.B., Muniz, C.R.: Exact solutions of the Klein-Gordon equation in the Kerr-Newman background and Hawking radiation. Ann. Phys. 350, 14 (2014). arXiv:1401.5397 [gr-qc]ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Andronikashvili Institute of PhysicsTbilisiGeorgia

Personalised recommendations