Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 8, pp 2632–2640 | Cite as

Quantum Algorithms and Circuits for Linear Equations with Infinite or No Solutions

  • Jin-Min Liang
  • Shu-Qian ShenEmail author
  • Ming Li
Article

Abstract

Linear equations with infinite or no solutions play key roles in machine learning and optimization. However, the existed quantum algorithms cannot be applied directly for these classes of equations. In this paper, based on the modification of algorithm (Wossnig et al., Phys. Rev. Lett. 120, 050502 2017), we describe a quantum algorithm to compute the minimal norm solution or minimum norm least-squares solution for equations with infinite or no solutions, respectively. It can be shown that the presented algorithm can achieve an exponential speedup over the best classical algorithm. Furthermore, the corresponding quantum circuit is designed on a quantum computer.

Keywords

Quantum algorithm Linear equations Quantum circuits 

Notes

Acknowledgements

The authors thank Dr. Bo-Jia Duan for her invaluable suggestions. This work is supported by the Natural Science Foundation of Shandong Province (ZR2016AM23) and the Fundamental Research Funds for the Central Universities (18CX02035A).

References

  1. 1.
    Montanaro, A.: . npj Quant. Inf. 2, 15023 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Shor, P.: .. In: Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. IEEE Computer Society Press (1994)Google Scholar
  3. 3.
    Grover, L.. In: Proc. 28Th Annual ACM Symposium on Theory of Computing. ACM, New York (1996)Google Scholar
  4. 4.
    Harrow, A.W., Hassidim, A., Lloyd, S.: . Phys. Rev. Lett. 103, 150502 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Rebentrost, P., Mohseni, M., Lloyd, S.: . Phys. Rev. Lett. 113, 130503 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Lloyd, S., Mohseni, M., Rebentrost, P.: . Nat. Phys. 10, 631 (2014)CrossRefGoogle Scholar
  7. 7.
    Yu, C.H., Gao, F., Wen, Q.Y.: arXiv:1707.09524 (2018)
  8. 8.
    Schuld, M., Sinayskiy, I., Petruccione, F.: . Contemp. Phys. 56, 172 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Wiebe, N., Braun, D., Lloyd, S.: . Phys. Rev. Lett. 109, 050505 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Lloyd, S., Mohseni, M., Rebentrost, P.: arXiv:1307.0411 (2013)
  11. 11.
    Clader, B.D., Jacobs, B.C., Sprouse, C.R.: . Phys. Rev. Lett. 110, 250504 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Wossnig, L., Zhao, Z., Prakash, A.: . Phys. Rev. Lett. 120, 050502 (2017)CrossRefGoogle Scholar
  13. 13.
    Kerenidis, I., Prakash, A.: arXiv:1603.08675 (2016)
  14. 14.
    Golub, G.H., Loan, C.F.V.: Matrix Computations. JHU Press, Baltimore (2012)zbMATHGoogle Scholar
  15. 15.
    Grover, L., Rudolph, T.: arXiv:0208112 (2002)
  16. 16.
    Bhaskar, M.K., Hadfield, S., Papageorgiou, A., Petras, I.: . Quantum Inf. Comput. 16, 197–236 (2016)MathSciNetGoogle Scholar
  17. 17.
    Vedral, V., Barenco, A., Ekert, A.: . Phys. Rev. A 54, 147 (1996)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Parent, A., Roetteler, M., Mosca, M.: arXiv:1706.03419 (2017)
  19. 19.
    Cao, Y.D., Papageorgiou, A., Petras, I., Traub, J., Kais, S.: . New J. Phys. 15, 013021 (2013)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Duan, B., Yuan, J., Liu, Y., Li, D.: . Phys. Rev. A 98, 012308 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  22. 22.
    ϵ A, ϵ b on behalf of the error of Hamiltonian simulation and the preparation of vector b Google Scholar
  23. 23.
    Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: . Quantum Inf. Comput. 305, 53–74 (2002)Google Scholar
  24. 24.
    Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, Tech. rep, Pittsburgh, PA USA (1994)Google Scholar
  25. 25.
    Schuld, M., Sinayskiy, I., Petruccione, F.: . Phys. Rev. A 94, 022342 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, G.M.: . Phys. Rev. A 96, 012335 (2017)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China
  2. 2.Max-Planck-Institute for Mathematics in SciencesLeipzigGermany

Personalised recommendations