Advertisement

Testing Temporal Contextuality with Quantum Entangled Histories

  • Guo-Zhu PanEmail author
  • Gang Zhang
  • Quan-Hai Sun
Article
  • 18 Downloads

Abstract

Quantum contextuality is a fundamental feature of quantum theory, which has been demonstrated in spatial scenario theoretically and experimentally. In this paper, we proposed a scheme to test temporal contextuality with a two-time entangled history state in the optical system. The contextuality is generated from the sequential projective measurements and revealed by the violation of the temporal Klyachko-Can-Binicioglu-Shumovsky inequality, which is obeyed by the noncontextual hidden variable theories. Compared with the existing schemes for testing quantum contextuality, ours can give the same physical result without collapsing the state. From the point of view of experiment, it is easier to implement as the measurement is projective measurement, and it can be extended to multiple time nodes.

Keywords

Quantum contextuality Klyachko-Can-Binicioglu-Shumovsky inequality Entangled histories Temporal correlations 

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) under Grant No. 11274010, the Key Program of west Anhui university under Grant No.WXZR201819 and KJ103762015B23, the Key Program of Domestic Visiting of Anhui Province under Grant No. gxfxZD2016193, the Domestic Visit Project of Excellent Backbone Talents of Anhui Province under Grant No. gxgnfx2018072, Anhui Sanlian University Research Innovation Platform Project under Grant No. PTZD2019030.

References

  1. 1.
    Bell, J.S.: On the Einstein-Podolsky-Rosen porodox. Physics 1, 195 (1964)CrossRefGoogle Scholar
  2. 2.
    Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Roy, S.M., Singh, V.: Quantum violation of stochastic noncontextual hidden-variable theories. Phys. Rev. A 48, 3379 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Larsson, J.A.: A Kochen-Specker inequality. Europhys. Lett. 58, 799 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A.S.: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Markiewicz, M., Kurzyński, P., Thompson, J., Lee, S.Y., Soeda, A., Paterek, T., Kaszlikowski, D.: Unified approach to contextuality, nonlocality, and temporal correlations. Phys. Rev. A 89, 042109 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Cabello, A.: Experimentally testable State-Independent quantum contextuality. Phys. Rev. Lett. 101, 210401 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Kirchmair, G., Zahringer, F., Gerritsma, R., Kleinmann, M., Guhne, O., Cabello, A., Blatt, R., Roos, C.F.: State-independent experimental test of quantum contextuality. Nature 460, 494 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Amselem, E., Radmark, M., Bourennane, M., Cabello, A.: State-Independent Quantum contextuality with single photons. Phys. Rev. Lett. 103, 160405 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Huang, Y.F., Li, C.F., Zhang, Y.S., Pan, J.W., Guo, G.C.: Experimental test of the Kochen-Specker theorem with single photons. Phys. Rev. Lett. 90, 250401 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Bartosik, H., Klepp, J., Schmitzer, C., Sponar, S., Cabello, A., Rauch, H., Hasegawa, Y.: Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103, 040403 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Cabello, A., Filipp, S., Rauch, H., Hasegawa, Y.: Proposed experiment for testing quantum contextuality with neutrons. Phys. Rev. Lett. 100, 130404 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Moussa, O., Ryan, C.A., Cory, D.G., Laflamme, R.: Testing contextuality on quantum ensembles with one clean qubit. Phys. Rev. Lett. 104, 160501 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lapkiewicz, R., Li, P., Schaeff, C., Langford, N.K., Ramelow, S., Wieśniak, M., Zeilinger, A.: Experimental non-classicality of an indivisible quantum system. Nature 474, 490 (2011)CrossRefGoogle Scholar
  15. 15.
    Griffiths, R.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  16. 16.
    Cotler, J., Wilczek, F.: Entangled histories. Phys. Scr. T168, 014004 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Gühne, O., Budroni, C., Cabello, A., Kleinmann, M., Larsson, J.: Bounding the quantum dimension with contextuality. Phys. Rev. A 89, 062107 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Cotler, J., Wilczek, F.: Bell Tests for Histories. arXiv:1503.06458 (2015)
  19. 19.
    Cotler, J., Wilczek, F.: Entanglement Enabled Intensity Interferometry. arXiv:1502.02477 (2015)
  20. 20.
    Cotler, J., Duan, L.M., Hou, P.Y., Wilczek, F., Xu, D., Yin, Z.Q., Zu, C.: Experimental test of entangled histories. Ann. Physics 387, 334 (2017)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Wei, L.F., Maruyama, K., Wang, X.B., You, J.Q., Nori, F.: Testing quantum contextuality with macroscopic superconducting circuits. Phys. Rev. B 81, 174513 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Dong, J.K., Chen, Y.M., Xu, D., Yin, Z.Q.: Greenberger-horne-zeilinger test for multi-dimension and arbitrary time nodes entangled histories. Sci. Bull. 62, 1235 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical and Photoelectric EngineeringWest Anhui UniversityLu’anChina
  2. 2.School of Basic Experimental Teaching CenterAnhui Sanlian UniversityHefeiChina

Personalised recommendations