Advertisement

Control of the Atomic Population of an Excited Atom by Using the Double Lorentzian Reservior

  • Si-Qi Zhang
  • Hong Li
  • Mei-Xuan Li
  • Ming Guo
  • Li-Jun SongEmail author
Article

Abstract

The evolution of two-level atomic system, in which the initial state is excited state, is investigated by adjusting the structural parameters of the dynamic and static double Lorentzian environment reservoir. In a static state (no modulation), we studied the effects of half width, center resonant frequency, and specific gravity on the evolution of energy level population. Under dynamic modulation, we used the dynamic cavity environment to control the evolution of spontaneous emission from an excited two-level atom. The dynamic modulation form for the half width of the double Lorentzian environment reservoir includes the rectangular single pulse, rectangular periodic pulse, and slowly continuous pulse. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.

Keywords

Quantum control Dynamic surroundings Excited atom Spontaneous emission 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China, Grant Number: 11347013; Scientific Research Fundation of the Education Department of Jilin Province, Grants Number: JJKH20190764KJ; Specialized Fund for the Doctoral Research of Jilin Engineering Normal University, Grants Number: BSKJ201828.

References

  1. 1.
    Schubert, E.F., Kim, J.K.: Science 308, 1274 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Suematsu, Y., Arai, S.: IEEE J. Sel. Top. Quant. Electron. 6, 1436 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Nazirzadeh, Y., Bog, U., Sekula, S., et al.: Opt. Express 18, 19120 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Yang, H., Ni, J.: Optik 125, 4367 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Dominguez, S., Cornago, I., García, O., et al.: Photonics Nanostruct.-Fundam. Appl. 11, 29 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Zamani, M., Ghanaatshoar, M.: J. Magn. Magn. Mater. 358, 76 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Ziemelis, K.: Nature 399, 408 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Mabuchi, H., Doherty, A.C.: Science 298, 1372 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Grätzel, M.: Nature 414, 338 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Vaseghi, B., Hashemi, H.: Opt. Commun. 369, 209 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Calajò, G., Rizzuto, L., Passante, R.: Phys. Rev. A 96, 023802 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, S.Q., Lu, J.B., Li, H., et al.: Int. J. Theor. Phys. 57, 1004 (2018)CrossRefGoogle Scholar
  13. 13.
    Purcell, E.M.: Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  14. 14.
    Desurvire, E., Simpson, J.R.: J. Lightwave Technol. 7, 835 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Betzig, E., Chichester, R.J.: Science 262, 1422 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Pease, A.C., Solas, D., Sullivan, E.J., et al.: Proc. Natl. Acad. Sci. USA 91, 5022 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Oulton, R.F., Sorger, V.J., Zentgraf, T., et al.: Nature 461, 629 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Choy, J.T., Hausmann, B.J.M., Babinec, T.M., et al.: Nat. Photonics 5, 738 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Noda, S., Fujita, M., Asano, T.: Nat. Photonics 1, 449 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Tam, F., Goodrich, G.P., Johnson, B.R., et al.: Nano Lett. 7, 496 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Russell, K.J., Liu, T.L., Cui, S., et al.: Nat. Photonics 6, 459 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Li, Y., Argyropoulos, C.: Opt. Express 24, 26696 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Hoang, T.B., Akselrod, G.M., Argyropoulos, C., et al.: Nat. Commun. 6, 7788 (2015)CrossRefGoogle Scholar
  24. 24.
    Glaetze, A.W., Hammerer, K., Daley, A.J., et al.: Opt. Commun. 283, 758 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Dodonov, V.V.: Phys. Scr. 82, 038105 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Antezza, M., Braggio, C., Carugno, G., et al.: Phys. Rev. Lett. 113, 023601 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Passante, R., Spagnolo, S.: Phys. Rev. A 76, 042112 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Armata, F., Passante, R.: Phys. Rev. D 91, 025012 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Linington, I.E., Garraway, B.M.: Phys. Rev. A 77, 033831 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Garraway, B.M.: Phys. Rev. A 55, 2290 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Si-Qi Zhang
    • 1
    • 2
  • Hong Li
    • 1
    • 2
  • Mei-Xuan Li
    • 1
    • 2
  • Ming Guo
    • 1
    • 2
  • Li-Jun Song
    • 1
    • 2
    Email author
  1. 1.Institute for Interdisciplinary Quantum Information TechnologyJilin Engineering Normal UniversityChangchunChina
  2. 2.Jilin Engineering Laboratory for Quantum Information TechnologyChangchunChina

Personalised recommendations