Advertisement

Quantum Protocol for Millionaire Problem

  • Wen LiuEmail author
  • Yong-Bin Wang
  • Ai-Na Sui
  • Min-Yao Ma
Article

Abstract

A quantum protocol for millionaire problem based on commutative encryption is proposed. In our protocol, Alice and Bob don’t have to use the entangled character, joint measurement of quantum states. They encrypt their private information and privately get the result of their private information with the help of a third party (TP). Correctness analysis shows that the proposed protocol can be used to get the result of their private information correctly. The proposed protocol can also resist various attacks and overcomes the problem of information leakage with acceptable efficiency. In theory, our protocol can be used to build complex secure protocols for other multiparty computation problems and also have lots of other important applications in distributed networks.

Keywords

Quantum protocol for millionaire problem 0 − 1 coding scheme Commutative encryption Security Information leakage 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.61502437, 61773352); the Fundamental Research Funds for the Central Universities (No. 2018CUC TJ017); the National Key R&D Program of China (2018YFB0803700); the China Scholarship Council (No. 201707055033); The Science and Technology Program of Guizhou Province (No. QianKeHeJiChu[2016]1115), the Science and Technology Platform and Talent Team Project of Guizhou Province (No. QianKeHePingTaiRenCai [2017]5501; QianKeHePingTaiRenCai [2016]5609), the Youth Science and Technology Talent Program of Department of Education of Guizhou Province (No. QianJiaoHeKYZi[2016]220).

References

  1. 1.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, p 218. ACM, New York (1987)Google Scholar
  2. 2.
    Yang, Y.G., Wen, Q.Y.: An, efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, X.B., Xu, G., Niu, X.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf Process 11, 373–384 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 1561–1565 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with chi-type state. Int. J. Theor. Phys. 51(1), 69–77 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51, 3596–3604 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using chi-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, W., Wang, Y.B., Tao, J.Z., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Liu, W., Wang, Y.B., Wang, X.M.: Quantum multi-party private comparison protocol using d-dimensional Bell states. Int. J. Theor. Phys. 54, 1830–1839 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53, 1085–1091 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, W., Wang, Y.B.: Dynamic multi-party quantum private comparison protocol with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 5307–5317 (2016)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Lin, S., Sun, Y., Liu, X.-F., Yao, Z.-Q.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process 12(1), 559–568 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Zhang, W.W., Li, D., Zhang, K.J., et al.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12, 2241–2249 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guo, F.Z., Gao, F., Qin, S.J., et al.: . Quantum Inf. Process. 12, 2793 (2013)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhou, Y.H., Shi, W.M., Yang, Y.G.: A quantum protocol for millionaire problem with continuous variables. Commun. Theor. Phys. 61, 452–456 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Hillery, M., Ziman, M., Buek, V., Bielikov, M.: Phys. Lett. A 349 (1–4), 75 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Du, J.Z., Chen, X.B., Wen, Q.X., Zhu, F.C.: Secure multiparty quantum summation. Acta. Phys. Sin-Ch Ed 56, 6214–6219 (2007)MathSciNetGoogle Scholar
  20. 20.
    Chen, X.B., Xu, G., Yang, Y.X., Wen, Q.Y.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49, 2793–2804 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, C., Sun, Z.-W., Huang, X.: Three-party quantum summation without a trusted third party. Int. J. Quantum Inf. 13(2), 1550011 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, C., Sun, Z., Huang, Y.: High-capacity quantum summation with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 53(3), 933–941 (2014)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shi, R.-H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Wei, C., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wei, C.Y., et al.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Gao, F., et al.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)ADSGoogle Scholar
  27. 27.
    Liu, B., et al.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  28. 28.
    Gao, F., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron.  https://doi.org/10.1007/s11433-018-9324-6
  30. 30.
    Wei, C., Cai, X., Liu, B., et al.: A generic construction of Quantum-Oblivious-Key-Transfer-Based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  33. 33.
    Liu, B., Gao, F., Huang, W.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  34. 34.
    Shi, R.H., et al.: Quantum oblivious set-member decision protocol. Phys. Rev. A 92, 022309 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Shi, R.H., et al.: Quantum private set intersection cardinality and its application to anonymous authentication. Inform. Sci. 370–371, 147–158 (2016)CrossRefGoogle Scholar
  36. 36.
    Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.P.: Network coding for quantum cooperative multicast. Quantum Inf. Process 14, 4297–4322 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Li, J., Chen, X.B., Sun, X.M., Li, Z.P., Yang, Y.X.: Quantum network coding for multi-unicast problem based on 2d and 3d cluster states. Sci. China-Inf. Sci. 59, 042301 (2016)CrossRefGoogle Scholar
  38. 38.
    Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115–118 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Xu, G., Chen, X.B., Duo, Z., Li, Z.P., Yang, Y.X.: A novel protocol for multiparty quantum key management. Quantum Inf. Process 14, 2959–2980 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Chen, X.B., Sun, Y.R., Xu, G., Jia, H.Y., Qu, Z., Yang, Y.X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process 16, 244 (2017)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, 160 (1982)Google Scholar
  42. 42.
    Chaabouni, R, Lipmaa, H, Zhang, B.: A non-interactive range proof with constant communication. In: Proceedings of International Conference on Financial Cryptography and Data Security, Kralendijk, pp. 179–199 (2012)Google Scholar
  43. 43.
    Gao, F., Qin, S.J., Wen, Q.Y., et al.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secretsharing protocol. Phys. Rev. A 76, 062324 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Lin, S., Gao, F., Guo, F.Z., et al.: Comment on Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 76, 036301 (2007)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Lin, S., Wen, Q.Y., Gao, F., et al.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process 17, 225 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Science and CybersecurityCommunication University of ChinaBeijingChina
  2. 2.Department of Mathematics and Computer ScienceGuizhou Education UniversityGuiyangChina

Personalised recommendations