Advertisement

Practical Security Analysis of Self-Referenced CV-QKD System in the Presence of Polarization Aberration

  • Jiawei Li
  • Sha Li
  • Ying GuoEmail author
  • Duan Huang
Article

Abstract

How to remove local oscillator (LO) side channel attacks has been a notoriously hard problem in continuous-variable quantum key distribution (CV-QKD). In the self-referenced CV-QKD schemes, the LO signal is locally generated at the receiver by an independent laser so that it is not co-transmitted with the quantum signal. This simple solution removes all LO side channels. However it also introduces some other practical vulnerabilities. Especially the polarization states of the quantum signal and LO signal may not be identical across the detector because of the presence of the polarization aberrations. Thus, the detection efficiency which is arguably the most critical experiment parameter of the practical implementation will be impaired. In this paper, we analyze the impact of polarization aberrations on the detection efficiency for CV-QKD and propose a self-referenced CV-QKD scheme in the presence of polarization aberrations by using an off-axis optical system. In the proposed scheme, the polarization states of the quantum signal would change with the off-axis optical system, thus impairing the heterodyne efficiency. Our security analysis shows a gap between the theory and practice of CV-QKD.

Keywords

Local oscillator Polarization states Polarization aberrations Detection efficiency Security 

Notes

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities of Central South University (Grant No. 2018zzts533), the National Natural Science Foundation of China (Grant Nos. 61871407, 61572529), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJB510045).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proc. of the IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  2. 2.
    Yuen, H.P.: Security of quantum key distribution. IEEE Access 4, 724–749 (1998)CrossRefGoogle Scholar
  3. 3.
    Zhou, N.R., Wang, L.J., Ding, J., Gong, L.H., Zuo, X.W.: Novel quantum deterministic key distribution protocols with entangled states. Int. J. Theor. Phys. 49, 2035–2044 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    He, G.Q., Zhu, S.W., Guo, H.B., Zeng, G.H.: Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack. Chin. Phys. B 17, 1263–1268 (2008)CrossRefGoogle Scholar
  5. 5.
    Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89, 035101 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15, 105204 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Huang, P., He, G.Q., Fang, J., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution via photon subtraction. Phys. Rev. A 87, 530–537 (2013)Google Scholar
  8. 8.
    Gong, L.H., Tian, C., Li, J.F., Zou, X.F.: Quantum network dialogue protocol based on continuous variable GHZ states. Quantum Inf. Process 17, 331 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, P., Huang, J.Z., Wang, T., Li, H.S., Huang, D., Zeng, G.H.: Robust continuous-variable quantum key distribution against practical attacks. Phys. Rev. A 95, 052302 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Guo, Y., Xie, C.L., Liao, Q., Zhao, W., Huang, D.: Entanglement-distillation attack on continuous-variable quantum key distribution in a turbulent atmospheric channel. Phys. Rev. A 96, 022320 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Guo, Y., Liao, Q., Wang, Y.J., Huang, D., Huang, P., Zeng, G.H.: Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction. Phys. Rev. A 95, 032304 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Liao, Q., Wang, Y.J., Huang, D., Guo, Y.: Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution. Opt. Express 26, 19907 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Coherent-state quantum key distribution without random basis switching. Phys. Rev. A 73, 022316 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Grosshans, F.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Navascués, M., Grosshans, F., Acín, A.: Optimality of Gaussian attacks in continuous-variable quantum cryptography. Phys. Rev. Lett. 97, 190502 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    García-Patrón, R., Cerf, N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Qin, H., Kumar, R., Alléaume, R.: Quantum hacking: saturation attack on practical continuous-variable quantum key distribution. Phys. Rev. A 94, 012325 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Gehring, T., Jacobsen, C.S., Andersen, U.L.: Reply to discrete and continuous variables for measurement-device-independent quantum cryptography. Nature Photon. 9, 773–775 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Soh, D.B.S., Brif, C., Coles, P.J., Lutkenhaus, N., Camacho, R.M., Urayama, J., Sarovar, M.: Self-referenced continuous-variable quantum key distribution protocol. Phys. Rev. X 5, 041010 (2015)Google Scholar
  22. 22.
    Yang, Y., Yan, C.X., Hu, C.H., Wu, C.J.: Modified heterodyne effociency for coherent laser communication in the presence of polarization aberrations. Opt. Express 25, 7567–7591 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Yun, G., Crabtree, K., Chipman, R.A.: Skew aberration: a form of polarization aberration. Opt. Lett. 36, 4062–4064 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    McIntyre, G.R., Kye, J., Levinson, H., Neureuther, A.R.: Polarization aberrations in hyper-numericalaperture projection printing: a comparison of various representations. J. Microlith. Microfab. Microsyst. 5, 033001 (2006)Google Scholar
  25. 25.
    Fink, D.: Coherent detection signal-to-noise. Appl. Opt. 14, 689–690 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    Yun, G., Crabtree, K., Chipman, R.A.: Three-dimensional polarization ray-tracing calculus i: definition and diattenuation. Appl. Opt. 50, 2855–2865 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Yun, G., McClain, S.C., Chipman, R.A.: Three-dimensional polarization ray-tracing calculus II: retardance. Appl. Opt. 50, 2866–2874 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Ruoff, J., Totzeck, M.: Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems. JM3 8, 031404 (2009)Google Scholar
  29. 29.
    Yamamoto, N., Kye, J., Levison, H.J.: Polarization aberration analysis using Pauli-Zernike representation. In: Conference on Optical Microlithography XX, p 65200Y. SPIE, California (2007)Google Scholar
  30. 30.
    Yang, Y., Yan, C.: Polarization property analysis of a periscopic scanner with three-dimensional polarization ray-tracing calculus. Appl. Opt. 55, 1343–1350 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Tanaka, K., Ohta, N.: Effects of tilt and offset of signal field on heterodyne efficiency. Appl. Opt. 26, 627–632 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81, 062343 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete variable protocols with one-way postprocessing. Phys. Rev. Lett. 100, 200501 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Jiangsu Key Construction Laboratory of IoT Application TechnologyWuxi Taihu UniversityWuxiChina

Personalised recommendations