Multi-Bits Transfer Based on the Quantum Three-Stage Protocol with Quantum Error Correction Codes

  • Duc Manh Nguyen
  • Sunghwan KimEmail author


This paper presents a multi-bits transfer quantum protocol based on the three-stage quantum cryptography in which both parties use their own secret keys. In addition, a quantum three-stage protocol emerging with quantum error correction code is proposed. Finally, a cost comparison between the multi-bits transfer quantum protocol and the original three-stage quantum cryptography protocol is analyzed to show that our protocol has better performance.


Quantum cryptography Quantum key distribution protocol Quantum three-stage protocol Quantum error correction code 



This work was supported by the Research Program through the National Research Foundation of Korea (NRF-2016R1D1A1B03934653, NRF-2019R1A2C1005920).


  1. 1.
    Von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)zbMATHGoogle Scholar
  2. 2.
    Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, vol. III. Quantum mechanics. Addison-Wesley, Reading (1965)zbMATHGoogle Scholar
  3. 3.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 6 (1982)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Shor, P.W.: Algorithms for quantum computation discrete logarithms and factoring, pp 124–134. IEEE Computer Society Press, Washington (1994)Google Scholar
  6. 6.
    Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Nguyen, D.M., Kim, S.: Quantum key distribution protocol based on modified generalization of Deutsch-Jozsa algorithm in d-level quantum system. Int. J. Theor. Phys. 58, 1 (2019)Google Scholar
  8. 8.
    Gaitan, F.: Quantum error correction and fault tolerant quantum computing. CRC Press, Boca Raton (2007)zbMATHGoogle Scholar
  9. 9.
    Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997)Google Scholar
  12. 12.
    Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J Cryptol 5(1), 3–28 (1992)CrossRefzbMATHGoogle Scholar
  13. 13.
    Cai, Q.Y.: The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett., 91 (2003)Google Scholar
  14. 14.
    Kak, S.: A three-stage quantum cryptography protocol. Found Phys Lett 19, 293 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mandal, S., et al.: Multi-photon implementation of three-stage quantum cryptography protocol. The International Conference on Information Networking (ICOIN) (2013)Google Scholar
  16. 16.
    Chan, K.W.C., Rifai, M.El., Verma, P.K., Kak, S.C., Chen, Y.: Security analysis of the multi-photon three-stage quantum key distribution. International Journal on Cryptography and Information Security (IJCIS), 5(3/4) (2015)Google Scholar
  17. 17.
    Parakh. A., van Brandwijk, J.: Correcting rotational errors in three stage QKD. In: 23rd International Conference on Telecommunications (ICT) (2016)Google Scholar
  18. 18.
    Thapliyal, K., Pathak, A.: Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol. Quantum Inf Process 17, 229 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Abdullah, A.A., Khalaf, R., Riza, M.: A realizable quantum Three-Pass protocol authentication based on Hill-Cipher algorithm. Math. Probl. Eng., 2015 (2015)Google Scholar
  20. 20.
    Nguyen, D.M., Kim, S.: Minimal-entanglement entanglement-assisted quantum error correction codes from modified circulant matrices. Symmetry 9(7), 122 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nguyen, D.M., Kim, S.: Construction and complement circuit of a quantum stabilizer code with length 7. In: Proceedings of 8th International Conference on Ubiquitous and Future Networks (2016)Google Scholar
  22. 22.
    Nguyen, D.M., Kim, S.: Quantum stabilizer codes construction from hermitian Self-Orthogonal codes over GF(4). J. Commun. Netw. 20(3), 209–315 (2017)Google Scholar
  23. 23.
    Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Reports on Progress in Physics. 76(7) (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical EngineeringUniversity of UlsanUlsanKorea

Personalised recommendations