International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 2027–2032 | Cite as

Charged Particles pT Spectra and the Correlation between pT and all Charged Particles at √S = 900 GeV

  • Muhammad AjazEmail author
  • Irfan Khan
  • Yasir Ali
  • Kamal Hussain Khan


The transverse momentum (pT) spectra, covering a region of 0.15–10 GeV/c, of charged particles as well as the correlation between the average transverse momentum <pT > and all charged particles (Nch) in pp collision at 900 GeV/c are investigated. Simulations by hadron production models are compared with the measurements of ALICE Collaboration. Qualitatively, all models’ predictions are in good agreement with experimental data for the pT distributions of invariant yield of all charged hadrons. For the <pT > as a function Nch presented in two pT regions, 0.15 < pT < 4 and 0.5 < pT < 4, the EPOS models, and HIJING produced good predictions of the experimental measurements as compared to QGSJETII-04 and Sibyll2.3c. Although the models’ prediction is compatible with the experimental data, none of them is enough comprehensive to provide complete description of all measurements.


Charged hadrons LHC energies Models predictions 


13.85.Ni 14.20.-c 14.40.-n 



This work is supported by the Higher Education Commission (HEC) of Pakistan by the Grant No. 20-3379/NRPU/R&D/HEC/2014.


  1. 1.
    Engel, R., Ranft, J., Roesler, S.: Hard diffraction in hadron-hadron interactions and in photoproduction. Phys. Rev. D. 52, 1459–1468 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Sjöstrand, T., Mrenna, S., Skands, P.: J. High Energy Phys. 0605, 026 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Ajaz, M., Tufail, M., Ali, Y.: Mod. Phys. Lett. A. 34, 1950100 (2019)ADSCrossRefGoogle Scholar
  4. 4.
    Ajaz, M., Bilal, M., Ali, Y., Suleymanov, M.K., Khan, K.H.: Mod. Phys. Lett. A. 34, 1950090 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    Ali, Q., Ali, Y., Haseeb, M., Tabassam, U., Ajaz, M., Ullah, S.: Study of transverse momentum distributions inp−Pbinteractions at 0.9 TeV and 5.02 TeV. Mod. Phys. Lett. A. 33, 1850179 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Ullah, S., Ajaz, M., Ali, Y.: Spectra of strange hadrons and their role in neutrinos flux prediction. EPL. 123, 31001 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Ullah, S., Ali, Y., Ajaz, M., Tabassam, U., Ali, Q.: π±, K±, protons and antiprotons production in proton–carbon interactions at 31 GeV/c using hadron production models. Int. J. Mod. Phys. A. 33, 1850108 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    K. Aamodt et al. (ALICE Collaboration) Phys. Lett. B 693, 53–68 (2010)Google Scholar
  9. 9.
    Werner, K., Liu, F.M., Pierog, T.: Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev., C. 74, 044902 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Werner, K.: Core-Corona Separation in Ultrarelativistic Heavy Ion Collisions. Phys. Rev. Lett. 98, 152301 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Pierog, T., Werner, K.: EPOS model and ultra high energy cosmic rays. Nucl. Phys. Proc. Suppl. 196, 102–105 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Pierog, T., Karpenko, I., Katzy, J.M., Yatsenko, E., Werner, K.: EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C. 92, 034906 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, X.-N.: Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D. 43, 104–112 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, X.-N., Gyulassy, M.: hijing: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D. 44, 3501–3516 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, X.-N., Gyulassy, M.: Systematic study of particle production in p+p (p¯) collisions via the HIJING model. Phys. Rev. D. 45, 844–856 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    Pierog, T. et al.: arXiv:1306.0121v2 [hep-ph], (2013)Google Scholar
  17. 17.
    Kalmykov, N.N., et al.: Bull. Russ. Acad. Sci. Phys. 58, 1966 (1994)Google Scholar
  18. 18.
    Ostapchenko, S.: Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: QGSJET-II model. Phys. Rev. D. 83, 014018 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Engel, R., Gaisser, T. K., Riehn, F., Stanev, T.: Proc. 34th Int. Cosmic Ray Conf., The Hague (Netherlands), 1 (2015) 1313Google Scholar
  20. 20.
    Ahn, E.-J., Engel, R., Gaisser, T.K., Lipari, P., Stanev, T.: Cosmic ray interaction event generator SIBYLL 2.1. Phys. Rev. D. 80, 094003 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Buckley, A., Butterworth, J., Grellscheid, D., Hoeth, H., Lönnblad, L., Monk, J., Schulz, H., Siegert, F.: Rivet user manual. Comput. Phys. Commun. 184, 2803–2819 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Skands, P.: Contribution to the 1st International Workshop on Multiple Partonic Interactions at the LHC, Perugia, Italy: Fermilab-Conf-09-113-T. In: arXiv:0905.3418 [Hep-Ph] (Oct. 2008)Google Scholar
  23. 23.
    ATLAS Collaboration, A: Moraes. In: ATLAS Note ATL-COM-PHYS-2009-119 (2009)Google Scholar
  24. 24.
    Albrow, M., et al.: Tevatron-for-LHC conference report of the QCD working group, Fermilab-Conf-06-359, hep-ph/0610012; T. Sjöstrand, P. Skands. Eur. Phys. J. C. 39, 129 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAbdul Wali Khan University MardanMardanPakistan
  2. 2.Department of PhysicsCOMSATS University IslamabadIslamabadPakistan
  3. 3.Department of PhysicsWomen University of Azad Jammu and Kashmir BaghBaghPakistan

Personalised recommendations