Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 2009–2015 | Cite as

Twist-Deformed Gravitational Quantum Well

  • Marcin DaszkiewiczEmail author
Article

Abstract

In this article we define the gravitational quantum well model on twist-deformed space with two spatial directions commuting to time-dependent function fκ(t). Further, we find the corresponding energy spectrum and by its comparision with the GRANIT experiment predictions, we obtain bounds on the noncommutativity function in the case of two first energy levels.

Keywords

Twist-deformation Gravitational quantum well GRANIT experiment 

Notes

Acknowledgments

The author would like to thank J. Lukierski for valuable discussions.

References

  1. 1.
    Snyder, H.S.: Phys. Rev. 72, 68 (1947)ADSCrossRefGoogle Scholar
  2. 2.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: Phys. Lett. B 331, 39 (1994)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: Comm. Math. Phys. 172, 187 (1995). arXiv:hep-th/0303037 ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Kempf, A., Mangano, G.: Phys. Rev. D 55, 7909 (1997). arXiv:hep-th/9612084 ADSCrossRefGoogle Scholar
  5. 5.
    Connes, A., Douglas, M.R., Schwarz, A.: JHEP 9802, 003 (1998). arXiv:hep-th/9711162 ADSCrossRefGoogle Scholar
  6. 6.
    Seiberg, N., Witten, E.: JHEP 9909, 032 (1999). arXiv:hep-th/9908142 ADSCrossRefGoogle Scholar
  7. 7.
    Deriglazov, A.: JHEP 0303, 021 (2003). arXiv:hep-th/0211105 ADSCrossRefGoogle Scholar
  8. 8.
    Chaichian, M., Sheikh-Jabbari, M.M., Tureanu, A.: Phys. Rev. Lett. 86, 2716 (2001). arXiv:hep-th/0010175 ADSCrossRefGoogle Scholar
  9. 9.
    Kosinski, P., Lukierski, J., Maslanka, P.: Phys. Rev. D 62, 025004 (2000). arXiv:hep-th/9902037 ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chaichian, M., Prešnajder, P., Tureanu, A.: Phys. Rev. Lett. 94, 151602 (2005). arXiv:/hep-th/0409096 ADSCrossRefGoogle Scholar
  11. 11.
    Zakrzewski, S.: “Poisson Structures on the Poincare group”; arXiv:q-alg/9602001
  12. 12.
    Brihaye, Y., Kowalczyk, E., Maslanka, P.: “Poisson-Lie structure on Galilei group”; arXiv:math/0006167
  13. 13.
    Daszkiewicz, M.: Mod. Phys. Lett. A27, 1250083 (2012). arXiv:1205.0319 ADSCrossRefGoogle Scholar
  14. 14.
    Oeckl, R.: J. Math. Phys. 40, 3588 (1999)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Chaichian, M., Kulish, P.P., Nashijima, K., Tureanu, A.: Phys. Lett. B 604, 98 (2004). arXiv:hep-th/0408069 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Daszkiewicz, M.: Mod. Phys. Lett. A 23, 505 (2008). arXiv:0801.1206 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lukierski, J., Nowicki, A., Ruegg, H., Tolstoy, V.N.: Phys. Lett. B 264, 331 (1991)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Giller, S., Kosinski, P., Majewski, M., Maslanka, P., Kunz, J.: Phys. Lett. B 286, 57 (1992)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lukierski, J., Woronowicz, M.: Phys. Lett. B 633, 116 (2006). arXiv:hep-th/0508083 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ogievetsky, O., Schmidke, W.B., Wess, J., Zumino, B.: Comm. Math. Phys. 150, 495 (1992)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Aschieri, P., Castellani, L., Scarfone, A.M.: Eur. Phys. J. C 7, 159 (1999). arXiv:q-alg/9709032 ADSGoogle Scholar
  22. 22.
    Nesvizhevsky, V.V., Boerner, H.G., Petukhov, A.K., Abele, H., Baeßler, S., Rueß, F.J., Stoeferle, Th., Westphal, A., Gagarsky, A.M., Petrov, G.A., Strelkov, A.V.: Nature 415, 297 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Nesvizhevsky, V.V., Boerner, H.G., Gagarski, A.M., Petukhov, A.K., Petrov, G.A., Abele, H., Baeßler, S., Divkovic, G., Rueß, F.J., Stoeferle, Th., Westphal, A., Strelkov, A.V., Protasov, K.V., Voronin, A.Yu.: Phys. Rev. D 67, 102002 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Bertolami, O., Rosa, J.G., de Aragao, C.M.L., Castorina, P., Zappala, D.: Phys. Rev. D 72, 025010 (2005). arXiv:hep-th/0505064 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Lawson, L., Gouba, L., Avossevou, G.Y.: J. Phys. A: Math. Theor. 50, 475202 (2017). arXiv:1705.03945 ADSCrossRefGoogle Scholar
  26. 26.
    Banerjee, R., Roy, B.D., Samanta, S.: Phys. Rev. D 74, 045015 (2006). arXiv:hep-th/0605277 ADSCrossRefGoogle Scholar
  27. 27.
    Castello-Branco, K.H.C., Martins, A.G.: J. Math. Phys. 51, 102106 (2010). arXiv:0803.0981 ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Abramowitz, M., Stegun, I.A. (eds.): Airy Functions Section 10.4 (1972)Google Scholar
  29. 29.
    Majid, S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (2000)Google Scholar
  30. 30.
    Reshetikhin, N.Yu.: Lett. Math. Phys. 20, 331 (1990)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Oeckl, R.: Phys, Nucl. B 581, 559 (2000)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Schiff, L.I.: “Quantum Mechanics”, McGraw-Hill; 3Rev Ed edition (1968)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsUniversity of Wroclaw pl. Maxa Borna 9WroclawPoland

Personalised recommendations