Advertisement

A Novel Quantum Group Proxy Blind Signature Scheme Based on Five-Qubit Entangled State

  • Ge LiuEmail author
  • Wen-Ping Ma
  • Hao Cao
  • Liang-Dong Lyu
Article

Abstract

A novel quantum group proxy blind signature scheme based on five-qubit entangled state is proposed. The quantum key distribution, quantum encryption algorithm and some laws of quantum mechanics (such as quantum no-cloning theorem and Heisenberg uncertainty principle) are used to guarantee the unconditional security of this scheme. Analysis result shows that the signature can neither be forged nor disavowed by any malicious attackers and our scheme satisfies all the characteristics of group signature and proxy signature. This protocol can be applied in real life such as E-commerce transaction.

Keywords

Group proxy blind signature Quantum teleportation Five-qubit entangled state Unconditional security 

Notes

Acknowledgements

This work is partially supported by the National Key R&D Program of China (Grant No. 2017YFB0802400), the National Science Foundation of China (Grant No. 61373171,61702007), the 111 Project under (Grant No. B08038)

References

  1. 1.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for database search (1996)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers. Systems and Signal Processing, Bangalore, India, pp. 175–179. IEEE, New York (1984)Google Scholar
  4. 4.
    Bennett, C.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Salas, P.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13, 861–869 (2013)Google Scholar
  6. 6.
    Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum secret sharing schemes. Phy. Rev. A 69, 052307 (2004)ADSGoogle Scholar
  7. 7.
    Tsai, C., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55(3), 460–464 (2012)ADSGoogle Scholar
  8. 8.
    Massoud, H., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55(10), 1828–1831 (2012)ADSGoogle Scholar
  9. 9.
    Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing theory through noisy channel. Quantum Inf. Comput. 12, 253–270 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Qin, S.J., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)ADSzbMATHGoogle Scholar
  11. 11.
    Wang, T.Y., Liu, Y.Z., Wei, C.Y., et al.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep., 7(1) (2017)Google Scholar
  12. 12.
    Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12(5), 1991–1997 (2013)ADSMathSciNetGoogle Scholar
  13. 13.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phy. Rev. Lett. 89, 187902 (2002)ADSGoogle Scholar
  14. 14.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pairblock. Phys. Rev. A 68, 042317 (2003)ADSGoogle Scholar
  15. 15.
    Huang, W., Wen, Q.Y., Jia, H.Y., et al.: Fault tolerant quantum secret direct communication with quantum encryption against collective noise. Chin. Phys. B 10, 100308 (2012)Google Scholar
  16. 16.
    Wang, T.Y., Ma, J.F., Cai, X.Q.: The postprocessing of quantum digital signatures. Quantum Inf. Process. 16(1), 19 (2017)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Wang, T.Y., Wei, Z.L.: Analysis of forgery attack on one-time proxy signature and the improvement. Int. J. Thero. Phys. 55(2), 743–745 (2016)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography[J]. Quantum Inf. Process. 11(2), 455–463 (2012)ADSMathSciNetGoogle Scholar
  20. 20.
    Gottesman, D., Chuang, I.: Quantum digital signature. arXiv:0105032v2 (2001)
  21. 21.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSGoogle Scholar
  22. 22.
    Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)ADSGoogle Scholar
  23. 23.
    Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G: Phys. Mech. Astron. 51(8), 1079–1088 (2008)ADSzbMATHGoogle Scholar
  24. 24.
    Yang, Y.G., Wang, Y., Teng, Y.W.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)ADSzbMATHGoogle Scholar
  25. 25.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Thero. Phys. 55(2), 809–816 (2016)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Thero. Phys. 55(8), 3524–3536 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Chaum, D., Van, H.E.: Group Signature. Advances in Cryptology, pp. 257–165. Springer, Berlin (1991)zbMATHGoogle Scholar
  28. 28.
    Wen, X., Tian, Y., Ji, L., et al.: A group signature scheme based on quantum teleportation. Phys. Rev. A 81(5), 055001 (2010)zbMATHGoogle Scholar
  29. 29.
    Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284, 3654–3658 (2011)ADSGoogle Scholar
  30. 30.
    Zhang, K.J., Sun, Y., Song, T.T., et al.: Cryptanalysis of the quantum group signature protocols. Physics 52(11), 4163–4173 (2013)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Su, Q., Li, W.M.: Improved group signature scheme based on quantum teleportation. Physics 53(4), 1208–1216 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Zhang, K., Song, T., Zou, H., et al.: A secure quantum group signature scheme based on Bell states. Phys. Scr. 87(4), 045012 (2013)ADSGoogle Scholar
  33. 33.
    Khodambashi, S., Zakerolhosseini, A.: A sessional blind signature based on quantum cryptography. Quantum Inf. Process. 13(1), 121–130 (2014)ADSMathSciNetGoogle Scholar
  34. 34.
    Xiao, M., Li, Z.: Quantum broadcasting multiple blind signature with constant size. Quantum Inf. Process. 15(9), 1–14 (2016)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Shi, W.M., Zhang, J.B., Zhou, Y.H., et al.: A new quantum blind signature with unlinkability. Quantum Inf. Process. 14(8), 3019–3030 (2015)ADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    Brown, I., Stepney, S., Sudbery, A.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. General. 38, 1119–1131 (2005)ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anChina
  2. 2.School of Information and Network EngineeringAnhui Science and Technology UniversityChuzhouChina

Personalised recommendations