Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1908–1926 | Cite as

Induced States from Coherent State via Photon-Addition Operations

  • Hong-Chun Yuan
  • Xue-Xiang Xu
  • Jian-Wen Cai
  • Ye-Jun XuEmail author
  • Xiang-Guo Meng
Article

Abstract

Three classes of quantum states are induced from coherent state (CS) based on three operations associated with the photon creation operator. One class is the famous photon-added coherent state (PACS) introduced by Agarwal and Tara (Phys. Rev. A 43, 492–497, 1991). The other two classes are the orthogonal states of the CS (Here we abbreviate them as OCS1 and OCS2). Indeed, the OCS1 is just the displacement Fock state, and the OCS2 is constructed by orthogonalizer proposed by Kim group (Phys. Rev. Lett. 116, 110501, 2016). In contrast to the original CS, the three induced states can exhibit their respective nonclassical properties. We study and compare some properties for these four quantum states (CS, PACS, OCS1, OCS2). The studied properties include the mean number of photons, the sub-Poissonian character, the squeezing effect in the field quadrature, and the quasi-probability distributions including the Husimi Q function and the Wigner function. Besides, their fidelities between each two of them are also discussed.

Keywords

Quantum state engineering Coherent state Photon-addition Orthogonalization 

Notes

References

  1. 1.
    Klauder, J.R.: The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Ann. Phys. 11, 123 (1960)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Klauder, J.R., Skagerstam, B.: Coherent States. World Scientific, Singapore (1985)CrossRefzbMATHGoogle Scholar
  4. 4.
    Zhang, W.M., Feng, D.H., Gilmore, R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867 (1990)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Sanders, B.C.: Entangled coherent states. Phys. Rev. A. 45, 6811 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Lund, A.P., Jeong, H., Ralph, T.C., Kim, M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science 306, 660 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Prakash, G.S., Agarwal, G.S.: Pair excitation-deexcitation coherent states. Phys. Rev. A 52, 2335 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Mancini, S.: Even and odd nonlinear coherent states. Phys. Lett. A 233, 291 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gilchrist, A., Munro, W.J.: Signatures of the pair-coherent state. J. Opt. B: Quantum Semiclass. Opt. 2, 47 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Dell’Anno, F., De Siena, S., Illuminati, F.: Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428, 53 (2006)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis, New York (2003)Google Scholar
  13. 13.
    Dodonov, V.V.: Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt. 4, R1 (2002)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Friedman, J.R., Patel, V., Chen, W., Tolpygo, S.K., Lukens, J.E.: Quantum superposition of distinct macroscopic states. Nature 406, 43 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    Yukawa, M., Miyata, K., Mizuta, T., Yonezawa, H., Marek, P., Filip, R., Furusawa, A.: Generating superposition of up-to three photons for continuous variable quantum information processing. Opt. Express 21, 5529 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Vlastakis, B., Kirchmair, G., Leghtas, Z., Nigg, S.E., Frunzio, L., Girvin, S.M., Mirrahimi, M., Devoret, M.H., Schoelkopf, R.J.: Deterministically encoding quantum information using 100-photon Schrodinger cat states. Science 342, 607 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wang, J.S., Meng, X.G.: Wigner functions and tomograms of the photon-depleted even and odd coherent states. Chin. Phys. B 17, 1254 (2008)CrossRefGoogle Scholar
  18. 18.
    Gribbin, J.: In: Search of Schrodinger’s Cat. Transworld Publishers, Ltd (1984)Google Scholar
  19. 19.
    Wakui, K., Takahashi, H., Furusawa, A., Sasaki, M.: Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express. 15, 3568 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Bellini, M., Zavatta, A.: Manipulating light states by single-photon addition and subtraction. Prog. Optics 55, 41 (2010)CrossRefGoogle Scholar
  21. 21.
    Zavatta, A., Parigi, V., Kim, M.S., Jeong, H., Bellini, M.: Experimental demonstration of the bosonic commutation relation via superpositions of quantum operations on thermal light fields. Phys. Rev. Lett. 103, 140406 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Park, J., Joo, J., Zavatta, A., Bellini, M., Jeong, H.: Efficient noiseless linear amplification for light fields with larger amplitudes. Opt. Express. 24, 1331 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Joo, J., Munro, W.J., Spiller, T.P.: Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Lund, A.P., Ralph, T.C., Haselgrove, H.L.: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Simon, D.S., Jaeger, G., Sergienko, A.V.: Entangled-coherent-state quantum key distribution with entanglement witnessing. Phys. Rev. A 89, 012315 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Vanner, M.R., Aspelmeyer, M., Kim, M.S.: Quantum state orthogonalization and a toolset for quantum optomechanical phonon control. Phys. Rev. Lett. 110, 010504 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Coelho, A.S., Costanzo, L.S., Zavatta, A., Hughes, C., Kim, M.S., Bellini, M.: Universal continuous-variable state orthogonalizer and qubit generator. Phys. Rev. Lett. 116, 110501 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Jezek, M., Micuda, M., Straka, I., Mikova, M., Dusek, M., Fiurasek, J.: Orthogonalization of partly unknown quantum states. Phys. Rev. A 89, 042316 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A. 43, 492 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Gerry, C.C., Knight, P.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar
  33. 33.
    Mandel, L.: Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    Anderson, U.L., Gehring, T., Marquardt, C., Leuchs, G.: 30 years of squeezed light generation. Phys. Scr. 91, 053001 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Xu, X.X., Yuan, H.C., Ma, S.J.: Measurement-induced nonclassical states from a coherent state heralded by Knill-Laflamme-Milburn-type interference. J. Opt. Soc. Am. B 33, 1322 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Husimi, K.: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264 (1940)zbMATHGoogle Scholar
  37. 37.
    Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)ADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Li, H.M., Yuan, H.C., Fan, H.Y.: Single-mode excited GHZ-type entangled coherent state. Int. J. Theor. Phys. 48, 2849 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclassicl Opt. 6, 396 (2004)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Hu, L.Y., Fan, H.Y.: Statistical properties of photon-subtracted squeezed vacuum in thermal environment. J. Opt. Soc. Am. B 25, 1955 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hong-Chun Yuan
    • 1
  • Xue-Xiang Xu
    • 2
  • Jian-Wen Cai
    • 1
  • Ye-Jun Xu
    • 3
    Email author
  • Xiang-Guo Meng
    • 4
  1. 1.College of Electrical and Optoelectronic EngineeringChangzhou Institute of TechnologyChangzhouChina
  2. 2.College of Physics and Communication ElectronicsJiangxi Normal UniversityNanchangChina
  3. 3.School of Mechanical and Electronic EngineeringChizhou UniversityChizhouChina
  4. 4.Shandong Provincial Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations