Advertisement

A New Protocol for Quantum Private Query Against Joint-Measurement Attack

  • Ying Wang
  • Fen-Zhuo GuoEmail author
  • Li Liu
  • Wei Huang
  • Qiao-Yan Wen
Article

Abstract

The quantum-key-distribution (QKD)-based quantum private query (QPQ) has become a research hotspot in recent years. Although such QPQ protocols are practical, joint-measurement (JM) attack is a noteworthy threat to the security of the database. In this paper, we propose a new QPQ protocol for enhancing database security against JM attack. The special procedure “receive→measure→re-prepare→send” for the user Alice prevents her from saving states to perform JM attack. Furthermore, since each photon only travels from one party to the other, our protocol reduces the drawback of two-way communication so that the transmission distance between Alice and the database holder Bob is satisfactory. We also analyze the security of the proposed protocol in terms of the database privacy and user privacy. Moreover, our protocol preserves the excellent character of QKD-based QPQs that it is loss tolerant.

Keywords

Quantum private query Joint-measurement attack User security Database security 

Notes

Acknowledgment

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61672110, 61572081, 61671082, 61702469, 61771439).

References

  1. 1.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1995), pp. 41–51 (1995)Google Scholar
  3. 3.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. Comput. Syst. Sci. 60, 592–629 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100, 230502 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Olejnik, L.: Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A 84, 022313 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Scarani, V., Acin, A., Ribordy, G., Gisin, N.: Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 92, 057901 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Gao, F., Liu, B., Wen, Q.Y.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411–17420 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Zhang, J.L., Guo, F.Z., Gao, F., Liu, B., Wen, Q.Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, Y.G., Sun, S.J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Wei, C.Y., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)CrossRefGoogle Scholar
  12. 12.
    Yang, Y.G., Sun, S.J., Tian, J., Xu, P.: Secure quantum private query with real-time security check. OPTIK. 125, 5538–5541 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Yang, Y.G., Zhang, M.O., Yang, R.: Private database queries using one quantum state. Quantum Inf. Process. 14, 1017–1024 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: QKD-Based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  15. 15.
    Rao, M.V.P., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A 87, 012331 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 98–108 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Maitra, A., Paul, G., Roy, S.: Device-independent quantum private query. Phys. Rev. A 95, 042344 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Zhao, L.Y., Yin, Z.Q., Chen, W.: Loss-tolerant measurement-device-independent quantum private queries. Sci. Rep. 7, 39733 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Yang, Y.G., Liu, Z.C., Li, J., Chen, X.B., Zuo, H.J., Zhou, Y.H., Shi, W.M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A 380, 4033–4038 (2016)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Science and Technology on Communication Security LaboratoryInstitute of Southwestern CommunicationChengduChina
  3. 3.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations