Advertisement

Multi-Party Quantum Key Agreement Protocol with Bell States and Single Particles

  • Hao-Nan Liu
  • Xiang-Qian Liang
  • Dong-Huan Jiang
  • Yong-Hua Zhang
  • Guang-Bao XuEmail author
Article

Abstract

Liu et al. [Quantum Inf. Process. 12, 1797–1805 (2013)] proposed a multi-party quantum key agreement (QKA) protocol based on single particles. Their protocol can resist outsider and participant attacks. However, its qubit efficiency is low. Min et al. [Int. J. Theor. Phys. 57, 1811–1822 (2018)] put forward a multi-party QKA protocol by using G-Like states and Bell states, which has high qubit efficiency, but it cannot resist the participant attack. In this paper, combining the advantages of the two protocols, we present a multi-party QKA protocol with Bell states and single particles. The protocol can guarantee that each party has an equal opportunity to influence the final shared key and no one can determine the final key alone. Furthermore, the efficiency analysis shows that our multi-party QKA protocol is very efficient.

Keywords

Quantum key agreement Multi-party Quantum entangled state 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61402265) and the Fund for Postdoctoral Application Research Project of Qingdao (01020120607).

References

  1. 1.
    Bennett, C.H., Brassard, G.: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. Ban-galore (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goldenberg, L., Vaidman, L.: Quantum cryptography. IEEE Trans. Inf. Theory 22, 644–654 (1976)CrossRefzbMATHGoogle Scholar
  5. 5.
    Tian, T.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55, 2303–2310 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xu, G.B., Wen Q.Y., Qin, S.J., Yang, Y.H., Gao, F.: Quantum nonlocality of multipartite orthogonal product states. Phys. Rev. A. 93, 032341 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor Phys.  https://doi.org/10.1007/s10773-018-03995-4 (2019)
  8. 8.
    Jiang, D.H., Wang, X.J., Xu, G.B., Lin, J.Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)CrossRefGoogle Scholar
  9. 9.
    Bennett, C.H., Wiesner, S.J.: Communication via one- and two- particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)Google Scholar
  11. 11.
    ElAllati, A., ElBaz, M., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 289–602 (2011)MathSciNetGoogle Scholar
  12. 12.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)MathSciNetGoogle Scholar
  13. 13.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, Z.J., Li, Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Liu, B., Gao, F., Wen, Q.Y.: Eavesdropping and improvement to multiparty quantum secret sharing with collective eavesdropping-check. Int. J. Theor. Phys. 51, 1211–1223 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68, 042317 (2003)Google Scholar
  17. 17.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)Google Scholar
  18. 18.
    Diffe, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor. 22, 644–654 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparsion of equality with w states. Opt. Commun. 284, 3160–3165 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Procssdings 14th Information Security Conference (ISC 2004), pp 236–242. National Taiwan University of Science and Technology, Taipei (2004)Google Scholar
  22. 22.
    Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Huang, W., Wen, Q.Y., Liu, B., Gao, F., Chen, H.: Deterministic secure quantum communication with collective detection using single photons. Int. J. Theor. Phys. 51, 2787–2797 (2012)CrossRefzbMATHGoogle Scholar
  28. 28.
    Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    He, Y.F., Ma, W.P.: Quantum key agreement protocol with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023–5035 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    He, Y.F., Ma, W.P.: Two quantum key agreement protocols immune to collective noise. Int. J. Theor. Phys. 56, 328–338 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)CrossRefGoogle Scholar
  33. 33.
    Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with g-like states and bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)CrossRefzbMATHGoogle Scholar
  35. 35.
    Sun, Z.W., Yu, J., Wang, P.: Efficient multi-party quantum key agreemrnt by cluster states. Quantum Inf. Process. 15, 373–384 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zhu, Z.C., Hu, A.Q., Fu, A.M.: Participant attack on three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 55, 1–7 (2016)CrossRefzbMATHGoogle Scholar
  37. 37.
    Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution system. Phys. Rev. A 73, 022320 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Wang, Z., Wang, X.H., Li, Y.X., Huang, X.: Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurcat. Chaos 27(13), 1750209 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wang, X.H., Wang, Z., Huang, X., Li, Y.X.: Dynamic analysis of a fractional-order delayed SIR model with saturated incidence and treatment functions. Int. J. Bifurcat. Chaos 28(14), 1850180 (2018)CrossRefGoogle Scholar
  41. 41.
    Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)MathSciNetGoogle Scholar
  42. 42.
    Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)MathSciNetGoogle Scholar
  43. 43.
    Zhao, W.C., Li, J., Meng, X.Z.: Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015, 848623 (2015)MathSciNetGoogle Scholar
  44. 44.
    Cui, Y.J., Zou, Y.M.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Cabellon, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hao-Nan Liu
    • 1
  • Xiang-Qian Liang
    • 1
  • Dong-Huan Jiang
    • 1
  • Yong-Hua Zhang
    • 2
  • Guang-Bao Xu
    • 1
    Email author
  1. 1.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoChina
  2. 2.College of Computer Science and EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations