Advertisement

Dynamical Properties of Intensity Dependent Two-Mode Raman Coupled Model in a Kerr Medium

  • Sudha SinghEmail author
  • Karuna Gilhare
Article

Abstract

The present paper describes the dynamics of a single two-level atom interacting with intensity dependent quantized bimodal field via Raman type process in an ideal cavity filled with a non-linear Kerr medium. The cavity modes interact with the atom as well as the Kerr medium. A unitary transformation method that is used to solve the time-dependent problem also gives the Eigen solutions of the interaction Hamiltonian. We study the atomic population dynamics and investigate the effects of intensity dependent coupling, Kerr medium and detuning parameters on the domain of the non-classical features of the atom field state. The intensity dependent coupling is introduced by the Hermitian operator valued functions of the number operator\( f\left({\widehat{n}}_i\right)\kern0.36em \left(i=1,2\right) \). We find that the intensity dependent coupling considered by the function \( f\left({n}_i\right)=\frac{1}{\sqrt{n_i}} \) introduces and ameliorates the non-classical features in the presence of Kerr medium.

Keywords

Two-mode Raman model Intensity dependent coupling Unitary operator \( \widehat{T} \) Kerr non-linearity  Photon statistics Antibunching Second order correlation functions 

PACS

42.50.-p 42.50.Ar 42.65 42.50.Ct 

Notes

References

  1. 1.
    Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 51, 89–109 (1963)CrossRefGoogle Scholar
  2. 2.
    Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A. 81, 132–135 (1981)ADSCrossRefGoogle Scholar
  3. 3.
    Sukumar, C.V., Buck, B.: Some soluble models for periodic decay and revival. J. Phys. A Math. Gen. 17, 885–894 (1984)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhou, P., Hu, Z.L., Ping, J.S.: Effect of atomic coherence on the collapses and revivals in some generalized Jaynes–Cummings models. J. Mod. Opt. 39, 49–62 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Faghihi, M.J., Tavassoly, M.K.: Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B Atomic Mol. Phys. 45, 035502 (2012) (14 pp)ADSCrossRefGoogle Scholar
  6. 6.
    Buzek, V.: Light squeezing in the Jaynes-Cummings model with intensity- dependent coupling. J. Mod. Opt. 36, 1151–1162 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Buzek, V., Jex, I.: Dynamics of a two-level atom in a Kerr-like medium. Opt. Commun. 78, 425–435 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Joshi, A., Puri, R.R.: Dynamical evolution of the two-photon Jaynes-Cummings model in a Kerr-like medium. Phys. Rev. A. 45, 5056–5060 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Grangier, P., Roch, J.F., Reynaud, S.: Quantum correlation and non-demolition measurements using two-photons nonlinearities in optical cavities. Opt. Commun. 72, 387–391 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    Meher, N., Sivakumar, S., Panigrahi, P.K.: Duality and quantum state engineering in cavity arrays. Sci. Rep. 7(1), 9251 (2017) (7pp)ADSCrossRefGoogle Scholar
  11. 11.
    Pachos, J., Chountasis, S.: Optical holonomic quantum computer. Phys. Rev. A. 62, 052318 (2000) (16pp)ADSCrossRefGoogle Scholar
  12. 12.
    Sunilkumar, V., Bambah, B.A., Jagannathan, R., Panigrahi, P.K., Srinivasan, V.: Coherent states of nonlinear algebras: applications to quantum optics. J. Opt. B: Quantum Semiclassical Opt. 2(2), 126–132 (2000)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Honarasa, G.R., Tavassoly, M.K.: Generalized deformed Kerr states and their physical properties. Phys. Scr. 86, 035401 (2012) (9pp)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Faghihi, M.J., Tavassoly, M.K.: Dynamics of entropy and nonclassical properties of the state of a Λ-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B Atomic Mol. Phys. 45, 035502 (2012) (14pp)ADSCrossRefGoogle Scholar
  15. 15.
    Zait, R.A.: Nonclassical statistical properties of a three-level atom interacting with a single-mode field in a Kerr medium with intensity dependent coupling. Phys. Lett. A. 319, 461–474 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Safaeian, O., Tavassoly, M.K.: Deformed photon-added nonlinear coherent states and their non-classical properties. J. Phys. A Math. Theor. 44, 225301 (2011) (21pp)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rosas-Ortiz, O., Zelaya, K.: Bi-orthogonal approach to non-Hermitian Hamiltonians with the oscillator spectrum: generalized coherent states for nonlinear algebras. Ann. Phys. 388, 26–53 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rosas-Ortiz, O., Castanos, O., Schuch, D.: New supersymmetry-generated complex potentials with real spectra. J. Phys. A Math. Theor. 48, 445302 (2015) (24pp)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gantsog, T., Joshi, A., Tanas, R.: Phase properties of one- and two-photon Jaynes –Cummings models with a Kerr medium. Quantum Semiclassical Opt. 8, 445–456 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Obada, A.-S.F., Eied, A.A., Abd Al-Kader, G.M.: A treatment of emission and absorption spectra of a general formalism V-type three-level atom driven by single mode field with nonlinearities. Laser Phys. 19, 1434–1445 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Naderi, M.H., Soltanolkotabi, M.: Influence of nonlinear quantum dissipation on the dynamical properties of f-deformed Jaynes-Cummings model in the dispersive limit. Eur. Phys. J. D. 39, 471–479 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Cordero, S., Recamier, J.: Algebraic treatment of the time-dependent Jaynes-Cummings Hamiltonian including nonlinear terms. J. Phys. A Math. Theor. 45, 385303 (2012) (13pp)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Si-de, D., Chang-de, G.: Classical beat phenomena from the Jaynes-Cummings model with a Kerr nonlinearity. Phys. Rev. A. 50, 779–782 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Obada, A.-S.F., Hanoura, S.A., Eied, A.A.: Collapse-revival phenomenon for different configurations of a three-level atom interacting with a field via multi-photon process and nonlinearities. Eur. Phys. J. D. 68, 18 (2014) (23pp)ADSCrossRefGoogle Scholar
  25. 25.
    Faghihi, M.J., Tavassoly, M.K., Hooshmandasl, M.R.: Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities. J. Opt. Soc. Am. B. 30(5), 1109–1117 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Ghorbani, M., Faghihi, M.J., Safari, H.: Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings model. J. Opt. Soc. Am. B. 34(9), 1884–1893 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Singh, S., Gilhare, K.: Influence of Kerr-like medium on the dynamics of a two-mode Raman coupled model. J. Mod. Opt. 63, 1506–1520 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Vogel, W., De Matos, F.R.L.: Nonlinear Jaynes-Cummings dynamics of a trapped ion. Phys. Rev. A. 52, 4214–4217 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Sudha, S.: Unitary transformation method for solving generalized Jaynes-Cummings models. Pramana J. Phys. 66, 615–620 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Fink, J.M., Goppl, M., Baur, M., Bianchetti, R., Leek, P.J., Blais, A., Wallraff, A.: Climbing the Jaynes-Cummings ladder and observing its sqrt(n) nonlinearity in a cavity QED system. Nature. 454, 315–318 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    Tavassoly, M.K.: New nonlinear coherent states associated with inverse bosonic and f-deformed ladder operators. J. Phys. A Math. Theor. 41, 285305 (2008) (19pp)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Tavassoly, M.K.: On the non-classicality features of new classes of nonlinear coherent states. Opt. Commun. 283, 5081–5091 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: F-oscillators and nonlinear coherent states. Phys. Scr. 55, 528–541 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    Sudarshan, E.C.G.: Diagonal harmonious state representations. Int. J. Theor. Phys. 32, 1069–1076 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sudha, S., Sinha, A.: Solutions of two-mode Jaynes-Cummings models. Pramana J. Phys. 70, 887–900 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Yang, X., Wu, Y., Li, Y.: Unified and standardized procedure to solve various nonlinear Jaynes-Cummings models. Phys. Rev. A. 55, 4545–4551 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    Cardimona, D.A., Kovanis, V., Sharma, M.P., Gavrielides, A.: Quantum collapses and revivals in a nonlinear Jaynes-Cummings model. Phys. Rev. A. 43, 3710–3723 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    Gerry, C.C., Eberly, J.H.: Dynamics of a Raman coupled model interacting with two quantized cavity fields. Phys. Rev. A. 42, 6805–6815 (1990)ADSCrossRefGoogle Scholar
  39. 39.
    Singh, S.: Field statistics in some generalized Jaynes-Cummings models. Phys. Rev. A. 25, 3206–3216 (1982)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    De Matos, F.R.L., Vogel, W.: Nonlinear coherent states. Phys. Rev. A. 54, 4560–4563 (1996)ADSCrossRefGoogle Scholar
  41. 41.
    De Matos, F.R.L., Vogel, W.: Engineering the Hamiltonian of a trapped atom. Phys. Rev. A. 58, 1661–1664 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Sudha, S., Raymond Ooi, C.H., Amrita: Dynamics for two atoms interacting with intensity-dependent two-mode quantized cavity fields in the ladder configuration. Phys. Rev. A. 86, 023810 (2012) 1-12ADSCrossRefGoogle Scholar
  43. 43.
    Gerry, C.C., Knight, P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University Department of PhysicsRanchi UniversityRanchiIndia
  2. 2.University Department of PhysicsRanchi UniversityRanchiIndia

Personalised recommendations