Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1711–1720 | Cite as

Quantum Routing on Single Photons with Π-Shaped Channels

  • Min-Min Zhang
  • Jiao-Jiao Hou
  • Chun Wu
  • Xiong YangEmail author
Article

Abstract

We propose a single-photon router that is made of three coupled-resonator forming a Π-type waveguide. The two atoms embedded in the two junctions, which have the distance of 2d, are used as quantum switch to control single photons routing. We find that the scattered rate depend on the incident single photons come from either infinite CRWs or semi-infinite CRWs, and the boundary can enhance the transfer rate.

Keywords

Single-photon Quantum information processing Coupled-resonator waveguides Quantum router 

Notes

Acknowledgments

Thanks for the beneficial discussion with Professor Lan Zhou, who gives some useful suggestion refer to this paper.

References

  1. 1.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušerk, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev Mod Phys. 81, 1304–1350 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Kimble, H.J.: The quantum internet. Nature (London). 453, 1023–1030 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Tsoi, T.S., Law, C.K.: Quantum interference effects of a single photon interacting with an atomic chain inside a one-dimensional waveguide. Phys Rev A. 78, 063832 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Tsoi, T.S., Law, C.K.: Single-photon scattering on -type three-level atoms in a one-dimensional waveguide. Phys Rev A. 80, 033823 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys Rev Lett. 107, 073601 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt Express. 23, 236563 (2015)Google Scholar
  7. 7.
    Xia, K., Twamley, J.: All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys Rev X. 3, 031013 (2013)Google Scholar
  8. 8.
    Zhou, L., Yang, L.P., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys Rev Lett. 111, 103604 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phy Rev A. 89, 013805 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Yan, W.B., Fan, H.: Control of single-photon transport in a one-dimensional waveguide by a single photon. Phys Rev Lett. 90, 053807 (2014)ADSGoogle Scholar
  11. 11.
    Aoki, T., Parkins, A.S., Alton, D.J., Rega, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: E cient routing of single photons by one atom and a microtoroidal cavity. Phys Rev Lett. 083601, 102 (2009)Google Scholar
  12. 12.
    Fink, J.M., Goppl, M., Baur, M., Bianchetti, R., Leek, P.J., Steffen, L., Blais, A., Wallra, A.: Thermal excitation of multi-photon dressed states in circuit quantum electrodynamics. Phys Scr. T137, 2009 (2009)CrossRefGoogle Scholar
  13. 13.
    Leib, M., Hartmann, M.J.: Bose-Hubbard dynamics of polaritons in a chain of circuit quantum electrodynamics cavities. New J Phys. 12, 093031 (2010)CrossRefGoogle Scholar
  14. 14.
    Liao, J.Q., Zhou, L., Liu, Y.X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phy Rev A. 042304, 81 (2010)Google Scholar
  15. 15.
    Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys Rev Lett. 100501, 101 (2008)Google Scholar
  16. 16.
    Yan, C.H., Jia, W.Z., Wei, L.F.: Controlling single-photon transport with three-level quantum dots in photonic crystals. Phy Rev A. 89, 033819 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Liao, J.Q., Huang, J.F., Liu, Y.X., Kuang, L.M., Sun, C.P.: Quantum switch for single-photon transport in a coupled superconducting transmission-line-resonator array. Phy Rev A. 80, 014301 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Chang, Y., Gong, Z.R., Sun, C.P.: Multiatomic mirror for perfect reection of single photons in a wide band of frequency. Phy Rev A. 83, 013825 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Harris, S.E., Yamamoto, Y.: Photon switching by quantum interference. Phys Rev Lett. 81, 3611–3614 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, J.H., Pototschnig, M., Lettow, R., Zumofen, G., Renn, A., GO tzinger, S., Sandoghdar, V.: A single-molecule optical transistor. Nature. 460, 76–80 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Astafiev, O., Zagoskin, A.M., Abdumalikov Jr., A.A., Pashkin, A., Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: Resonance fluorescence of a single articial atom. Science. 327, 840–843 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Shen, J.T., Fan, S.: Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys Rev Lett. 98, 153003 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Shen, J.T.: Fan, S.:coherent single photon transport in a one-dimensional waveguide coupled with superconduting quantum bit. Phys Rev Lett. 213001, 95 (2005)Google Scholar
  24. 24.
    You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys Today. 58(11), 42–47 (2005)CrossRefGoogle Scholar
  25. 25.
    Shi, T., Sun, C.P.: Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays. Phys Rev B. 79, 205111 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and ElectronicsHunan Normal UniversityChangshaChina
  2. 2.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaChina

Personalised recommendations