Advertisement

On Coverings of Products of Uninitialized Sequential Quantum Machines

  • Feidan HuangEmail author
Article

Abstract

The concept of sequential quantum machine (SQM) was firstly introduced by Gudder. Qiu further investigated some properties of SQMs and introduced the concept of quantum sequential machine (QSM) which was an equivalent version of SQM. A uninitialized sequential quantum machine (USQM) is a sequential quantum machine which has no initialized state. The main purpose of this paper is to investigate three coverings of products of USQMs: covering, probability covering and weak probability covering. More specifically, we firstly introduce the concepts of products of USQMs and study properties of these products. Secondly, we introduce the concept of covering of USQMs, and study covering properties of products of USQMs. Finally, we introduce the concepts of probability cove- ring and weak probability covering of USQMs, and study properties of these coverings of products.

Keywords

Uninitialized sequential quantum machine Uninitialized quantum sequential machine Product Covering Probability covering 

Notes

Acknowledgments

This research is supported by the Science and Technology Cooperation Project of Guizhou Province under the Grant NO. LH [2016]7062.

References

  1. 1.
    Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Feynman, R.P.: Simulating physics with computers. J. Stat. Phys. 21, 467–488 (1982)MathSciNetGoogle Scholar
  3. 3.
    Deutsh, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 326–328 (1997)ADSGoogle Scholar
  6. 6.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237, 275–306 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gudder, S.: Quantum computers. Int. J. Theor. Phys. 39, 2151–2177 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Qiu, D.W.: Quantum pushdown automata. Int. J. Theor. Phys. 41, 1627–1639 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Qiu, D.W., Ying, M.S.: Characterizations of quantum automata. Theor. Comput. Sci. 312, 479–489 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Qiu, D.W.: Automata theory based on quantum logic: some characterizations. Inf. Comput. 190, 179–195 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Qiu, D.W.: Automata theory based on quantum logic: reversibilities and pushdown automata. Theor. Comput. Sci. 386, 38–56 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ying, M.S.: Automata theory based on quantum logic i. Int. J. Theor. Phys. 39, 985–995 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ying, M.S.: Automata theory based on quantum logic ii. Int. J. Theor. Phys. 39, 2545–2557 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Qiu, D.W.: Characterization of sequential quantum machines. Int. J. Theor. Phys. 41, 811–822 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, L.Z., Qiu, D. W.: Determination of equivalence between quantum sequential machines. Theor. Comput. Sci. 358, 65–74 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, L.Z., Qiu, D.W.: A note on quantum sequential machines. Theor. Comput. Sci. 410, 2529–2535 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, L.Z., Qiu, D.W.: Determining the equivalence for one-way quantum finite automata. Theor. Comput. Sci. 403, 42–51 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zheng, S.G., Li, L.Z., Qiu, D.W.: Two-tape finite automata with quantum and classical states. Int. J. Theor. Phys. 50, 1262–1281 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zheng, S.G., Qiu, D.W., Gruska, J., Li, L.Z., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theor. Comput. Sci. 499, 98–112 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Qiu, D.W., Yu, S.: Hierarchy and equivalence of multi-letter quantum finite automata. Theor. Comput. Sci. 410, 3006–3017 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Qiu, D.W., Li, L.Z., Zou, X.F., Mateus, P., Gruska, J.: Multi-letter quantum finite automata: decidability of the equivalence and minimization of states. Acta Inform. 48, 271–290 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zheng, S.G., Gruska, J., Qiu, D.W.: On the state complexity of semi-quantum finite automata. Theor. Inf. Appl. 48, 187–207 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zheng, S.G., Qiu, D.W., Gruska, J.: Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata. Inf. Comput. 241, 197–214 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gruska, J., Qiu, D.W., Zheng, S.G.: Generalizations of the distributed Deutsch-Jozsa promise problem. Math. Struct. Comput. Sci. 27, 311–331 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zheng, S.G., Li, L.Z., Qiu, D.W., Gruska, J.: Promise problems solved by quantum and classical finite automata. Theor. Comput. Sci. 666, 48–64 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Qiu, D.W., Li, L.Z.: An overview of quantum computation models: quantum automata. Frontiers Comput. Sci. China 2, 193–207 (2008)CrossRefGoogle Scholar
  27. 27.
    Mereghetti, C., Palano, B.: Quantum finite automata with control language. RAIRO-Theoretical Informatics and Applications. 40(2), 315–332 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theor. Comput. Sci. 287(1), 299–311 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ambainis, A., Yakaryilmaz, A.: Automata and quantum computing. Comput. Sci. 67(5), 125–128 (2015). arXiv:1507.01988v2 Google Scholar
  30. 30.
    Huang, F.D., Xie, Zh.W., Deng, Z.X., Yang, J.K.: Algebraic properties of uninitialized sequential quantum machines. Chin. J. Eng. Math. 34, 262–282 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Malik, D.S., Mordeson, J.N., Sen, M.K.: Products of fuzzy finite state machines. Fuzzy Set. Syst. 92, 95–102 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kumbhojkar, H.V., Chaudhari, S.R.: On covering of products of fuzzy finite state machines. Fuzzy Set. Syst. 125, 215–222 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Maler, O.: A decomposition theorem for probabilistic transition systems. Theor. Comput. Sci. 145, 391–396 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (1971)zbMATHGoogle Scholar
  35. 35.
    Horn, R. A., Johnson, C.R.: Topics of matrix analysis, vol. 239-248. Cambridge University Press, Cambridge (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceGuizhou University of Engineering ScienceBijieChina

Personalised recommendations