Verifiable Quantum Secret Sharing Protocols Based on Four-Qubit Entangled States
- 10 Downloads
Abstract
A new verifiable three-party quantum secret sharing protocol is proposed based on a special four-qubit entangled state which is inequivalent to four-qubit singlet states under stochastic local operations and classical communication (SLOCC). The validity of the reconstructed secret is verifiable based on the method like Byzantine agreement. It is generalized to verifiable multiparty quantum secret sharing based on four-qubit entangled states. It is shown to be secure against common attacks and feasible with present-day technology. PACS number(s): 03.67.Dd, 03.67.Hk, 03.67.Lx.
Keywords
Quantum cryptography Quantum secret sharing Four-qubit entangled stateNotes
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant Nos.61572053,61671087,61602019); Beijing Natural Science Foundation (Grant No. 4182006).
References
- 1.Shamir, A.: How to share a secret. Commun. ACM. 22, 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of National Computer Conference, pp. 313–317. AFIPS, New York (1979)Google Scholar
- 3.Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: Proceedings of 26th IEEE Symposium on Foundations of Computer Science, pp. 383–395 (1985)Google Scholar
- 4.Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)Google Scholar
- 5.Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–664 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 6.Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 7.Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRefGoogle Scholar
- 8.Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003)ADSCrossRefGoogle Scholar
- 9.Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829–1834 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 10.Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)ADSCrossRefGoogle Scholar
- 11.Dušek, M., Haderka, O., Hendrych, M., Myska, R.: Quantum identification system. Phys. Rev. A. 60, 149–156 (1999)ADSCrossRefGoogle Scholar
- 12.Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055305 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 13.Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)ADSzbMATHCrossRefGoogle Scholar
- 14.Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)ADSCrossRefGoogle Scholar
- 15.Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Theoretically extensible quantum digital signature with starlike cluster states. Quantum Inf. Process. 16(1), 1–15 (2017)zbMATHCrossRefGoogle Scholar
- 16.Yang, Y.-G., Lei, H., Liu, Z.-C., Zhou, Y.-H., Shi, W.-M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15(6), 2487–2497 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 17.Jiang, D.-H., Xu, Y.-L., Xu, G.-B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-018-03995-4
- 18.Wang, T.-Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signature. Sci. Rep. 5, 9231 (2015)CrossRefGoogle Scholar
- 19.Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
- 20.Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A. 93, 042318 (2016)ADSCrossRefGoogle Scholar
- 21.Yang, Y.-G., Liu, Z.-C., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Robust QKD-based private database queries based on alternative sequences of single-qubit measurements. Sci. China Phys. Mech. Astron. 60(12), 120311 (2017)ADSCrossRefGoogle Scholar
- 22.Yang, Y.-G., Liu, Z.-C., Li, J., Chen, X.-B., Zuo, H.-J., Zhou, Y.-H., Shi, W.-M.: Quantum private query with perfect user privacy against a joint-measurement attack. Phys. Lett. A. 380(48), 4033–4038 (2016)ADSzbMATHCrossRefGoogle Scholar
- 23.Yang, Y.-G., Liu, Z.C., Chen, X.B., Cao, W.F., Zhou, Y.H., Shi, W.M.: Novel classical post-processing for quantum key distribution-based quantum private query. Quantum Inf. Process. 15, 3833–3840 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 24.Gao, F., Liu, B., Wen, Q.-Y.: Flexible quantum private queries based on quantum key distribution. Opt. Express. 20, 17411–17420 (2012)ADSCrossRefGoogle Scholar
- 25.Yang, Y.-G., Sun, S.-J., Xu, P., Tian, J.: Flexible protocol for quantum private query based on B92 protocol. Quantum Inf. Process. 13, 805–813 (2014)ADSMathSciNetCrossRefGoogle Scholar
- 26.Zhang, J.-L., Guo, F.-Z., Gao, F., Liu, B., Wen, Q.-Y.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A. 88, 022334 (2013)ADSCrossRefGoogle Scholar
- 27.Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)Google Scholar
- 29.Yang, Y.-G., Guo, X.-P., Xu, G., Chen, X.-B., Li, J., Zhou, Y.-H., Shi, W.-M.: Reducing the communication complexity of quantum private database queries by subtle classical post-processing with relaxed quantum ability. Comput. Secur. 81, 15–24 (2019)CrossRefGoogle Scholar
- 30.Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., Shi, W.-M., Chen, X.-B., Li, J., Zuo, H.-J.: Quantum network communication: a discrete-time quantum-walk approach. SCIENCE CHINA Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRefGoogle Scholar
- 31.Xu, G., Chen, X.B., Zhao, D., Li, Z.P., Yang, Y.X.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959–2980 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 32.Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14, 4297–4322 (2015)Google Scholar
- 33.Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115–118 (2015)ADSCrossRefGoogle Scholar
- 34.Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61(4), 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 35.Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59(1), 162–168 (1999)ADSCrossRefGoogle Scholar
- 36.Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A. 354(3), 190–195 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 37.Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69(5), 052307 (2004)ADSCrossRefGoogle Scholar
- 38.Ji, Q., Liu, Y., Xie, C., Yin, X., Zhang, Z.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659–1676 (2014)ADSzbMATHCrossRefGoogle Scholar
- 39.Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Three-party quantum secret sharing of secure direct communication based on χ-type entangled states. Chin. Phys. B. 19(5), 050306 (2010)ADSCrossRefGoogle Scholar
- 40.Dehkordi, M.H., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state. Quantum Inf. Process. 12, 1299–1306 (2013)ADSzbMATHCrossRefGoogle Scholar
- 41.Guo, Y., Zhao, Y.Q.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf. Process. 12, 1125–1139 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 42.Liao, C., Yang, C., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13(8), 1907–1916 (2014)ADSzbMATHCrossRefGoogle Scholar
- 43.He, X., Yang, C.: Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Inf. Process. 14(12), 4461–4474 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 44.Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92: 030301(R)(2015)Google Scholar
- 45.Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50, 792–798 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Yang,Y.G., Jia, X.,Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process 11: 1619–1625(2012)Google Scholar
- 47.Xu, J., Yuan, J.: Improvement and extension of quantum secret sharing using orthogonal product states. Int. J. Quantum Inf. 12(1), 1450008 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 48.Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A. 78(4), 042309 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 49.Keet, A., Forescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A. 82(6), 062315 (2010)ADSCrossRefGoogle Scholar
- 50.Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A. 86(4), 042303 (2012)ADSCrossRefGoogle Scholar
- 51.Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92: 030302(R)(2015)Google Scholar
- 52.Lin, S., Guo, G., Xu, Y., Sun, Y., Liu, X.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A. 93, 062343 (2016)ADSCrossRefGoogle Scholar
- 53.Lau, H.K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A. 88, 042313 (2013)ADSCrossRefGoogle Scholar
- 54.Li, D.F., Li, X.R., Huang, H.T., Li, X.X.: Classification of four-qubit states by means of a stochastic local operation and the classical communication invariant and semi-invariants. Phys. Rev. A. 76, 052311 (2007)ADSCrossRefGoogle Scholar
- 55.Zhang, Y.Q., Shen, D.M.: Estimation of semi-parametric varying-coefficient spatial panel data models with random-effects. J. Statist. Plann. Inference. 159, 64–80 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 56.Dong, H.H., Zhao, K., Yang, H.W., Li, Y.Q.: Generalised (2+1)-dimensional super Mkdv hierarchy for integrable systems in soliton theory. East Asian J. Appl. Math. 5(3), 256–272 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.Liu, F., Wang, Z.Y., Wang, F.: Hamiltonian systems with positive topological entropy and conjugate points. J. Appl. Anal. Comput. 5(3), 527–533 (2015)MathSciNetGoogle Scholar
- 58.Jiang, D.-H., Wang, X.-J., Xu, G.-B., Lin, J.-Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)Google Scholar
- 59.Li, L., Wang, Z., Li, Y.X., Shen, H., Lu, J.W.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330, 152–169 (2018)MathSciNetGoogle Scholar
- 60.Liang, X., Gao, F., Zhou, C.-B., Wang, Z., Yang, X.-J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Difference Equ. 2018(25), (2018)Google Scholar
- 61.Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)MathSciNetGoogle Scholar
- 62.Zhou, J.P., Sang, C.Y., Li, X., Fang, M.Y., Wang, Z.: H∞ consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)MathSciNetGoogle Scholar
- 63.Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv. Comput. Math. 44(1), 245–275 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 64.Liu, F.: Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces, Revista de la Real Academia de Ciencias Exactas. Fisicas y Nat. Ser. A. Math. 112(2), 593–614 (2018)Google Scholar
- 65.Wang, W., Zhang, T.Q.: Caspase-1-mediated pyroptosis of the predominance for driving CD4++ T cells death: a nonlocal spatial mathematical model. Bull. Math. Biol. 80(3), 540–582 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 66.Li, H.J., Zhu, Y.L., Liu, J., Wang, Y.: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols. Appl. Math. Comput. 326, 1–15 (2018)MathSciNetCrossRefGoogle Scholar
- 67.Cui, Y.J., Ma, W.J., Sun, Q., Su, X.W.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Modell. Control. 23(1), 31–39 (2018)MathSciNetCrossRefGoogle Scholar
- 68.Cui, Y.J., Ma, W.J., Wang, X.Z., Su, X.W.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. (9), 1–10 (2018)Google Scholar
- 69.Ma, W.-X.: Conservation laws by symmetries and adjoint symmetries. Discrete Contin. Dynam. Systems-Series S. 11(4), 707–721 (2018)MathSciNetzbMATHGoogle Scholar
- 70.Ma, W.-X., Yong, X.L., Zhang, H.-Q.: Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput. Math. Appl. 75(1), 289–295 (2018)MathSciNetCrossRefGoogle Scholar
- 71.Ma, W.-X., Zhou, Y.: Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264(4), 2633–2659 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 72.McAnally, M., Ma, W.-X.: An integrable generalization of the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy. Appl. Math. Comput. 323, 220–227 (2018)MathSciNetGoogle Scholar
- 73.Lu, C.N., Fu, C., Yang, H.W.: Time-fractional generalized boussinesq equation for rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions. Appl. Math. Comput. 327, 104–116 (2018)MathSciNetGoogle Scholar
- 74.Liu, F.: Continuity and approximate differentiability of multisublinear fractional maximal functions. Math. Inequal. Appl. 21(1), 25–40 (2018)MathSciNetzbMATHGoogle Scholar
- 75.Wang, J., Cheng, H., Li, Y., et al.: The geometrical analysis of a predator-prey model with multi-state dependent impulsive. J. Appl. Anal. Comput. 8(2), 427–442 (2018)MathSciNetGoogle Scholar
- 76.Chen, J., Zhang, T., Zhang, Z.Y., Lin, C., Chen, B.: Stability and output feedback control for singular Markovian jump delayed systems. Math. Control Relat. Fields. 8(2), 475–490 (2018)MathSciNetCrossRefGoogle Scholar
- 77.Xu, X.-X., Sun, Y.-P.: Two symmetry constraints for a generalized Dirac integrable hierarchy. J. Math. Anal. Appl. 458, 1073–1090 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 78.Shen, H., Song, X.N., Li, F., Wang, Z., Chen, B.: Finite-time L2-L∞ filter design for networked Markov switched singular systems: a unified method. Appl. Math. Comput. 321(15), 450–462 (2018)MathSciNetGoogle Scholar
- 79.Wang, Z., Wang, X.H., Li, Y.X., Huang, X.: Stability and Hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurcation Chaos. 27(13), 1750209 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 80.Zhang, Y., Dong, H.H., Zhang, X.E., Yang, H.W.: Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 73, 246–252 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 81.Zhang, S.Q., Meng, X.Z., Zhang, T.H.: Dynamics analysis and numerical simulations of a stochastic non-autonomous predator-prey system with impulsive effects. Nonlinear Anal. Hybrid Syst. 26, 19–37 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 82.Zhang, R.Y., Xu, F.F., Huang, J.C.: Reconstructing Local Volatility Using Total Variation. Acta Math. Sin. Engl. 33(2), 263–277 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 83.Liu, F.: A remark on the regularity of the discrete maximal operator. Bull. Aust. Math. Soc. 95, 108–120 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 84.Liu, F.: Integral operators of Marcinkiewicz type on Triebel-Lizorkin spaces. Math. Nachr. 290, 75–96 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 85.Tian, Z.L., Tian, M.Y., Liu, Z.Y., Xu, T.Y.: The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C. Appl. Math. Comput. 292, 63–75 (2017)MathSciNetGoogle Scholar
- 86.Song, Q.L., Dong, X.Y., Bai, Z.B., Chen, B.: Existence for fractional Dirichlet boundary value problem under barrier strip conditions. J. Nonlinear Sci. Appl. 10, 3592–3598 (2017)MathSciNetCrossRefGoogle Scholar
- 87.Liu, F., Wu, H.X.: On the regularity of maximal operators supported by submanifolds. J. Math. Anal. Appl. 453, 144–158 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 88.Liu, F., Wu, H.X.: Regularity of discrete multisublinear fractional maximal functions. SCIENCE CHINA Math. 60(8), 1461–1476 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 89.Liu, F., Wu, H.X.: Endpoint regularity of multisublinear fractional maximal functions. Can. Math. Bull. 60(3), 586–603 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 90.Liu, F., Mao, S.Z.: On the regularity of the one-sided Hardy-Littlewood maximal functions. Czechoslov. Math. J. 67(142), 219–234 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 91.Liu, F.: On the Triebel-Lizorkin space boundedness of Marcinkiewicz integrals along compound surfaces. Math. Inequal. Appl. 20(2), 515–535 (2017)MathSciNetzbMATHGoogle Scholar
- 92.Li, X.Y., Zhao, Q.L.: A new integrable symplectic map by the binary nonlinearization to the super AKNS system. J. Geom. Phys. 121, 123–137 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 93.Cheng, W., Xu, J.F., Cui, Y.J.: Positive solutions for a system of nonlinear semipositone fractional q-difference equations with q-integral boundary conditions. J. Nonlinear Sci. Appl. 10, 4430–4440 (2017)MathSciNetCrossRefGoogle Scholar
- 94.Xu, X.-X., Sun, Y.-P.: An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. J. Nonlinear Sci. Appl. 10, 3328–3343 (2017)MathSciNetCrossRefGoogle Scholar
- 95.Liu, Y.Q., Sun, H.G., Yin, X.L., Xin, B.G.: A new Mittag-Leffler function undetermined coefficient method and its applications to fractional homogeneous partial differential equations. J. Nonlinear Sci. Appl. 10, 4515–4523 (2017)MathSciNetCrossRefGoogle Scholar
- 96.Chen, J.C., Zhu, S.D.: Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation. Appl. Math. Lett. 73, 136–142 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 97.Zhang, X.E., Chen, Y., Zhang, Y.: Breather, lump and X soliton solutions to nonlocal KP equation. Comput. Math. Appl. 74(10), 2341–2347 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 98.Zhang, J.B., Ma, W.X.: Mixed lump-kink solutions to the BKP equation. Comput. Math. Appl. 74, 591–596 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 99.Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74, 1399–1405 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 100.Liu, F., Wu, H.X.: Singular integrals related to homogeneous mappings in Triebel-Lizorkin spaces. J. Math. Inequal. 11(4), 1075–1097 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 101.Liu, F.: Rough singular integrals associated to surfaces of revolution on Triebel-Lizorkin spaces. Rocky Mt. J. Math. 47(5), 1617–1653 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 102.Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 103.Wang, Y.H.: Beyond regular semigroups. Semigroup Forum. 92(2), 414–448 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 104.Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: Bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcation Chaos. 26(11), 1630031 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 105.Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)MathSciNetGoogle Scholar
- 106.Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)MathSciNetGoogle Scholar
- 107.Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 108.Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H.: Dynamics of a novel nonlinear stochastic Sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 109.Yin, C., Cheng, Y.H., Zhong, S.M., Bai, Z.B.: Fractional-order switching type control law design for adaptive sliding mode technique of 3d fractional-order nonlinear systems. Complexity. 21(6), 363–373 (2016)MathSciNetCrossRefGoogle Scholar
- 110.Liu, F., Mao, S.Z., Wu, H.X.: On rough singular integrals related to homogeneous mappings. Collect. Math. 67(1), 113–132 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 111.Liu, F., Chen, T., Wu, H.X.: A note on the endpoint regularity of the Hardy-littlewood maximal functions. Bull. Aust. Math. Soc. 94(1), 121–130 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 112.Liu, F., Fu, Z.W., Zheng, Y.P., Yuan, Q.: A rough marcinkiewicz integral along smooth curves. J. Nonlinear Sci. Appl. 9(6), 4450–4464 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 113.Liu, F., Wang, F.: Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points. Acta Math. Sin. (Engl. Ser.). 32(4), 507–520 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 114.Cui, Y.J.: Existence of solutions for coupled integral boundary value problem at resonance. Publ. Math. Debr. 89(1-2), 73–88 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 115.Cui, Y.J., Zou, Y.M.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal. Modell. Control. 21(6), 828–838 (2016)MathSciNetCrossRefGoogle Scholar
- 116.Dong, H.H., Guo, B.Y., Yin, B.S.: Generalized fractional supertrace identity for Hamiltonian structure of Nls-Mkdv hierarchy with self-consistent sources. Anal. Math. Phys. 6(2), 199–209 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 117.Liu, F.: Wu, H.X.: L-p bounds for marcinkiewicz integrals associated to homogeneous mappings. Monatsh. Math. 181(4), 875–906 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 118.Li, X.P., Lin, X.Y., Lin, Y.Q.: Lyapunov-Type conditions and stochastic differential equations driven by G-brownian motion. J. Math. Anal. Appl. 439(1), 235–255 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 119.Liu, F., Zhang, D.Q.: Multiple singular integrals and maximal operators with mixed homogeneity along compound surfaces. Math. Inequal. Appl. 19(2), 499–522 (2016)MathSciNetzbMATHGoogle Scholar
- 120.Zhao, Y., Zhang, W.H.: Observer-based controller design for singular stochastic Markov jump systems with state dependent noise. J. Syst. Sci. Complex. 29(4), 946–958 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 121.Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435(1), 593–605 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 122.Zhang, T.Q., Ma, W.B., Meng, X.Z., Zhang, T.H.: Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)MathSciNetGoogle Scholar
- 123.Liu, F., Zhang, D.Q.: Parabolic marcinkiewicz integrals associated to polynomials compound curves and extrapolation. Bull. Korean Math. Soc. 52(3), 771–788 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 124.Ling, S.T., Cheng, X.H., Jiang, T.S.: An algorithm for coneigenvalues and coneigenvectors of quaternion matrices. AACA. 25(2), 377–384 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 125.Liu, F., Wu, H.X., Zhang, D.Q.: L-p bounds for parametric marcinkiewicz integrals with mixed homogeneity. Math. Inequal. Appl. 18(2), 453–469 (2015)MathSciNetzbMATHGoogle Scholar
- 126.Liu, F., Wu, H.X.: On the regularity of the multisublinear maximal functions. Can. Math. Bull. - Bulletin Canadien De Mathematiques. 58(4), 808–817 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 127.Gao, M., Sheng, L., Zhang, W.H.: Stochastic H-2/H-infinity control of nonlinear systems with time-delay and state-dependent noise. Appl. Math. Comput. 266, 429–440 (2015)MathSciNetGoogle Scholar
- 128.Li, Y.X., Huang, X., Song, Y.W., Lin, J.N.: A new fourth-order memristive chaotic system and its generation. Int. J. Bifurcation Chaos. 25(11), 1550151 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 129.Xu, X.X.: A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)MathSciNetzbMATHGoogle Scholar
- 130.Li, X.Y., Zhao, Q.L., Li, Y.X., Dong, H.H.: Binary bargmann symmetry constraint associated with 3×3 discrete matrix spectral problem. J. Nonlinear Sci. Appl. 8(5), 496–506 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 131.Yu, J., Li, M.Q., Wang, Y.L., He, G.P.: A decomposition method for large-scale box constrained optimization. Appl. Math. Comput. 231, 9–15 (2014)MathSciNetzbMATHGoogle Scholar
- 132.Liu, F., Mao, S.Z.: L-p bounds for nonisotropic marcinkiewicz integrals associated to surfaces. J. Aust. Math. Soc. 99(3), 380–398 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 133.Tramontana, F., Elsadany, A.A., Xin, B.G., Agiza, H.N.: Local stability of the cournot solution with increasing heterogeneous competitors. Nonlinear Anal. Real World Appl. 26, 150–160 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 134.Cui, Y.J., Zou, Y.M.: Monotone iterative technique for (K,N-K) conjugate boundary value problems. Electron. J. Qual. Theory Differ. Equ. (69), 1–11 (2015)Google Scholar
- 135.Tan, C., Zhang, W.H.: On observability and detectability of continuous-time stochastic Markov jump systems. J. Syst. Sci. Complex. 28(4), 830–847 (2015)MathSciNetzbMATHCrossRefGoogle Scholar