Noise Effects and Perfect Controlled Remote State Preparation
- 1 Downloads
Abstract
We investigate how the efficiency is affected on the noise environments in the controlled remote state preparation protocol, where the several realistic scenarios, i.e., a part or all of the qubits are subjected to the same or different types of noise, are considered. We find that more noise or less entanglement of qubits environment lead to more efficiency in terms of average fidelity. We show that it is better way to subject the qubits in different noise channels in order to increase the fidelity of the controlled remote state preparation protocol. By using a non-maximally three-qubit pure entangled state as quantum channel, furthermore, we could realize a perfect controlled remote state preparation by choosing the right noisy environments and adjusting their relations in terms of noisy rates.
Keywords
Environment Controlled remote state preparation Entanglement EfficiencyPACS
03.67.Hk 03.67.Bg 03.65.Ud 05.40.FbNotes
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 11764021, 11564018, 61765008, 11804133, 51567011), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ150339).
References
- 1.Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 2.Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)CrossRefzbMATHGoogle Scholar
- 3.Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 4.Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
- 5.Ber, R., Kenneth, O., Reznik, B.: Superoscillations underlying remote state preparation for relativistic fields. Phys. Rev. A. 91, 052312 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 6.Dakic, B., Lipp, Y.O., Ma, X.S., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)CrossRefGoogle Scholar
- 7.Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A. 88, 022315 (2013)ADSCrossRefGoogle Scholar
- 8.Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 63, 014302 (2000)ADSCrossRefGoogle Scholar
- 9.Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
- 10.Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A. 69, 022310 (2004)ADSCrossRefGoogle Scholar
- 11.Paris, M.G.A., Cola, M.M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B. 5, 360–364 (2003)ADSCrossRefGoogle Scholar
- 12.Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
- 13.Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)ADSCrossRefGoogle Scholar
- 14.Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A. 68(062319), (2003)Google Scholar
- 15.Spee, C., de Vicente, J.I., Kraus, B.: Remote entanglement preparation. Phys. Rev. A 88, 010305(R) (2013)Google Scholar
- 16.Xu, Z.Y., Liu, C., Luo, S.L., Zhu, S.Q.: Non-Markovian effect on remote state preparation. Ann. Phys. 356, 29–36 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 17.Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A. 306, 271–276 (2003)ADSCrossRefGoogle Scholar
- 18.Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
- 19.Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A. 72(012315), (2005)Google Scholar
- 20.Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)ADSCrossRefGoogle Scholar
- 21.Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A. 76, 022308 (2007)ADSCrossRefGoogle Scholar
- 22.Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A. 81, 042301 (2010)ADSCrossRefGoogle Scholar
- 23.Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)ADSCrossRefGoogle Scholar
- 24.Radmark, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A. 88, 032304 (2013)ADSCrossRefGoogle Scholar
- 25.Zavatta, A., D’Angelo, M., Parigi, V., Bellini, M.: Remote preparation of arbitrary time-encoded single-photon ebits. Phys. Rev. Lett. 96, 020502 (2006)ADSCrossRefzbMATHGoogle Scholar
- 26.Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B Atomic Mol. Phys. 40, 3719–3724 (2007)ADSCrossRefGoogle Scholar
- 27.An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B Atomic Mol. Phys. 41, 095501 (2008)ADSCrossRefGoogle Scholar
- 28.Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 29.Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585–4592 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 30.Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, Y.S., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13, 1979–2005 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 31.Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235–240 (2009)ADSCrossRefzbMATHGoogle Scholar
- 32.Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 33.Chen, X.B., Ma, S.Y., Yuan, S.Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 34.Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639–1650 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 35.Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077–1089 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 36.An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A. 378, 3582–3585 (2014)ADSCrossRefzbMATHGoogle Scholar
- 37.Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223–3237 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 38.Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 39.Wang, Z.S., Wu, C.F., Feng, X.L., Kwek, L.C., Lai, C.H.: Oh, C.H.: effects of a squeezed-vacuum reservoir on geometric phase. Phys. Rev. A. 75, 024102 (2007)ADSCrossRefGoogle Scholar
- 40.Li, C.F., Tang, J.S., Li, Y.L., Guo, G.C.: Experimentally witnessing the initial correlation between an open quantum system and its environment. Phys. Rev. A. 83, 064102 (2011)ADSCrossRefGoogle Scholar
- 41.Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)CrossRefGoogle Scholar
- 42.Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857–3877 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 43.Taketani, B.G., deMelo, F., deMatos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301(R) (2012)Google Scholar
- 44.Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012)Google Scholar
- 45.Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: An experimental study on the influence of local environments. Phys. Rev. A. 90, 042332 (2014)ADSCrossRefGoogle Scholar
- 46.Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A. 92, 012338 (2015)ADSCrossRefGoogle Scholar
- 47.Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 48.Uhlmann, A.: The “transition probability” in the state space of a*-algebra. Rep. Math. Phys. 9, 273–279 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 49.Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar