Advertisement

Theoretical Investigation of Optical Bistability and Multistability Via Spontaneously Generated Coherence in Four-Level Rydberg Atoms

  • Gh. Solookinejad
  • M. Jabbari
  • M. Nafar
  • E. Ahmadi Sangachin
  • S. H. AsadpourEmail author
Article

Abstract

In this paper, we have suggested a configuration based on Rydberg atoms for adjusting properties of optical bistability (OB) and optical multistability (OM) via spontaneously generated coherence (SGC) in a unidirectional ring cavity. The Rydberg atoms consist of four energy levels interacts by a weak probe and a strong coupling fields, respectively. We have found that due to presence of SGC, threshold of OB and OM can be controlled when the strong light coupled the intermediate levels to the Rydberg state.

Keywords

Optical bistability Optical multistability Spontaneously generated coherence Rydberg state 

PACS

42.50.-p 42.65.-k 42.65.Pc 

Notes

References

  1. 1.
    Wu, Y.: Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A. 71, 053820 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Wu, Y., Yang, X.: Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime. Phys. Rev. A. 70, 053818 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Wu, Y., Yang, X.: Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A. 71, 053806 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Yang, W.-X., Chen, A.-X., Si, L.-G., Jiang, K., Yang, X., Lee, R.-K.: Three coupled ultraslow temporal solitons in a five-level tripod atomic system. Phys. Rev. A. 81, (2010)Google Scholar
  5. 5.
    Yang, W.-X., Hou, J.-M., Lin, Y., Lee, R.-K.: Detuning management of optical solitons in coupled quantum wells. Phys. Rev. A. 79, 033825 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Yang, W.-X., Lee, R.-K.: Slow optical solitons via intersubband transitions in a semiconductor quantum well. Eur. Phys. Lett. 83, 14002 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, S., Yang, W.-X., Zhu, Z., Lee, R.-K.: Giant enhanced four-wave mixing efficiency via two-photon resonance in asymmetric quantum wells. Laser Phys. Lett. 12, 095202 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Zhu, Z., Yang, W.-X., Xie, X.-T., Liu, S., Liu, S., Lee, R.-K.: Three-dimensional atom localization from spatial interference in a double two-level atomic system. Phys. Rev. A. 94, (2016)Google Scholar
  9. 9.
    Hossein Asadpour, S., Eslami-Majd, A.: Controlling the optical bistability and transmission coefficient in a four-level atomic medium. J. Lumin. 132, 1477–1482 (2012)CrossRefGoogle Scholar
  10. 10.
    Asadpour, S.H., Rahimpour Soleimani, H.: Polarization dependence of optical bistability in the presence of external magnetic field. Opt. Commun. 310, 120–124 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, Z., Zhen, S., Wu, X., Zhu, J., Cao, Z., Yu, B.: Controllable optical bistability via tunneling induced transparency in quantum dot molecules. Opt. Commun. 304, 7–10 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Osman, K.I., Joshi, A.: Induced coherence and optical bistability in a four-level system with incoherent pumping. Opt. Commun. 293, 86–94 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Luling Jin, L.J., Zhongyao Feng, Z.F.: Optical bistability and multistability via amplitude and phase control in a duplicated two-level system. Chin. Opt. Lett. 11, 050201–050204 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Cui, Y., Zeng, C.: Optical bistability based on an analog of electromagnetically induced transparencyin plasmonic waveguide-coupled resonators. Appl. Opt. 51, 7482–7486 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, H.U.I., Zhang, H.-T., Wang, Z.-P.: Optical bistability via incoherent pumping fields in semiconductor quantum wells. Mod. Phys. Lett. B. 25, 97–108 (2011)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Chen, A., Wang, Z., Chen, D.: Optical bistability and multistability via atomic coherence in the quasi-Λ-type atomic system. Sci. China, Ser. G. 52, 524–528 (2009)CrossRefGoogle Scholar
  17. 17.
    Li, J.-H.: Controllable optical bistability in a four-subband semiconductor quantum well system. Phys. Rev. B. 75, 155329 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Joshi, A., Yang, W., Xiao, M.: Effect of quantum interference on optical bistability in the three-level V-type atomic system. Phys. Rev. A. 68, (2003)Google Scholar
  19. 19.
    Joshi, A., Brown, A., Wang, H., Xiao, M.: Controlling optical bistability in a three-level atomic system. Phys. Rev. A. 67, 041801 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Li, J.-H.: Coherent control of optical bistability in tunnel-coupled double quantum wells. Opt. Commun. 274, 366–371 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, L., Tan, Z., Zhu, Y., Zhan, M.: Control of optical bistability in the nonlinear regime of two-sided cavity quantum electrodynamics. J. Opt. Soc. Am. B. 34, 1780–1786 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Solookinejad, G., Panahi, M., Ahmadi Sangachin, E., Asadpour, S.H.: Observation of optical Bistability in a Polaritonic material doped with nanoparticles. Plasmonics. 12, 1881–1887 (2017)CrossRefGoogle Scholar
  23. 23.
    Sawant, R., Rangwala, S.A.: Optical-bistability-enabled control of resonant light transmission for an atom-cavity system. Phys. Rev. A. 93, 023806 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Asadpour, S.H., Rahimpour Soleimani, H.: Phase dependence of optical bistability and multistability in graphene nanostructure under external magnetic field. Laser Phys. Lett. 13, 015204 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Asadpour, S.H., Rahimpour Soleimani, H.: Phase and thickness control of optical bistability and multistability in a defect slab with a single layer of graphene. Laser Phys. Lett. 13, 015201 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Li, J.H., Yang, X.X.: Optical bistability via tunable Fano-type interference in asymmetric semiconductor quantum wells. EPJ D. 53, 449–454 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Antón, M.A., Carreño, F., Calderón, O.G., Melle, S.: Tunable all-optical bistability in a semiconductor quantum dot damped by a phase-dependent reservoir. Opt. Commun. 281, 3301–3313 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, Z., Xu, M.: Control of the switch between optical multistability and bistability in three-level V-type atoms. Opt. Commun. 282, 1574–1578 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Sharaby, Y.A., Joshi, A., Hassan, S.S.: Optical bistability without the rotating wave approximation. Phys. Lett. A. 374, 2188–2194 (2010)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    Asadpour, S.H., Soleimani, H.R.: Optical bistability in a three-level lambda molecule with permanent dipole moments. J. Opt. Soc. Am. B. 31, 3123 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Asghar, S., Qamar, S., Qamar, S.: Electromagnetically induced grating with Rydberg atoms. Phys. Rev. A. 94, 033823 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Bharti, V., Natarajan, V.: Sub- and super-luminal light propagation using a Rydberg state. Opt. Commun. 392, 180–184 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Petrosyan, D., Otterbach, J., Fleischhauer, M.: Electromagnetically induced transparency with Rydberg atoms. Phys. Rev. Lett. 107, 213601 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Lee, R.-K., Qamar, S.: Control of Goos–Hänchen shift via input probe field intensity. Opt. Commun. 379, 68–73 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Bharti, V., Wasan, A., Natarajan, V.: Wavelength mismatch effect in electromagnetically induced absorption. Phys. Lett. A. 380, 2390–2394 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Asadpour, S.H., Hamedi, H.R., Jafari, M.: Enhancement of Goos–Hänchen shift due to a Rydberg state. Appl. Opt. 57, 4013–4019 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Hamedi, H.R., Sahrai, M., Khoshsima, H., Juzeliūnas, G.: Optical bistability forming due to a Rydberg state. J. Opt. Soc. Am. B. 34, 1923–1929 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Li, J.-H., Lü, X.-Y., Luo, J.-M., Huang, Q.-J.: Optical bistability and multistability via atomic coherence in anN-type atomic medium. Phys. Rev. A. 74, 035801 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gh. Solookinejad
    • 1
  • M. Jabbari
    • 2
  • M. Nafar
    • 2
  • E. Ahmadi Sangachin
    • 3
  • S. H. Asadpour
    • 1
    Email author
  1. 1.Department of Physics, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
  2. 2.Department of Electrical Engineering, Marvdasht BranchIslamic Azad UniversityMarvdashtIran
  3. 3.Young Researchers and Elite Club, Marvdasht BranchIslamic Azad UniversityMarvdashtIran

Personalised recommendations