Fault-Tolerant Quantum Anonymous Voting Protocol

  • Sheng-lan Wang
  • Shun Zhang
  • Qing Wang
  • Run-hua ShiEmail author


In this paper, we propose a new fault-tolerant quantum anonymous voting protocol, which is designed to be robust against the collective-phasing noise and the collective-rotation noise. In the proposed protocol, the scrutineer, Charlie, prepares the photons sequence, which is used not only as the quantum ballot ticket, but also to authenticate the voter’s (i.e., Alice) identity. Especially it can realize the detection of Alice’s identity during the voting process. At the same time, the proposed protocol solves the problem of non-reusability of the quantum anonymous voting. Compared with other quantum anonymous voting protocols, our quantum anonymous voting protocol is more secure and practical.


Quantum voting Fault-tolerant Anonymous Authentication 



This work was supported by National Natural Science Foundation of China (No.61772001).


  1. 1.
    Christandl, M., Wehner, S.: Quantum Anonymous Transmissions. International Conference on the Theory and Application of Cryptology and Information Security, pp. 217–235. Springer, Berlin (2005)Google Scholar
  2. 2.
    Hillery, M.: Quantum voting and privacy protection: first steps. Int. Soc. Opt. Eng. (2006).
  3. 3.
    Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A. 75(1), 012333 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Li, Y., Zeng, G.: Quantum anonymous voting systems based on entangled state. Opt. Rev. 15(5), 219–223 (2008)CrossRefGoogle Scholar
  5. 5.
    Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A. 375(8), 1172–1175 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Xu, Q.J., Zhang, S.Y.: Improvement of the security of quantum protocols for anonymous voting and surveying. Sci. China Phys. Mech. Astron. 53(11), 2131–2134 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Bonanome, M., Buˇzek, V., Hillery, M., Ziman, M.: Toward protocols for quantum-ensured privacy and secure voting. Phys. Rev. A. 84, 022331 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Jiang, L., He, G., Nie, D., et al.: Quantum anonymous voting for continuous variables. Phys. Rev. A. 85(4), 9335–9340 (2012)CrossRefGoogle Scholar
  9. 9.
    Li, Y., Zeng, G.: Anonymous quantum network voting scheme. Opt. Rev. 19(3), 121–124 (2012)CrossRefGoogle Scholar
  10. 10.
    Wang, Y.W.: Quantum voting protocols based on the non-symmetric quantum channel with controlled quantum operation teleportation. Acta Phys. Sin. 62(16), 581–586 (2013)Google Scholar
  11. 11.
    Sundar, D.S., Narayan, N.: A Novel Voting Scheme Using Quantum Cryptography. Proceeding of Open Systems, pp. 66–71. IEEE (2015)Google Scholar
  12. 12.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Thapliyal, K., Sharma, R.D., Pathak, A.: Analysis and improvement of Tian-Zhang-Li voting protocol based on controlled quantum teleportation. (2016)
  14. 14.
    Cao, H.J., Ding, L.Y., Yu, Y.F., et al.: An electronic voting scheme achieved by using quantum proxy signature. Int. J. Theor. Phys. 55(9), 1–8 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, Q., Yu, C., Gao, F., et al.: Self-tallying quantum anonymous voting. Phys. Rev. A. 94(2), 022333 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 12, 1–10 (2017)ADSzbMATHGoogle Scholar
  17. 17.
    Xue, P., Zhang, X.: A simple quantum voting scheme with multi-qubit entanglement. Sci. Rep. 7(1), 7586 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Niu, X.F., Zhang, J.Z., Xie, S.C., et al.: An improved quantum voting scheme. Int. J. Theor. Phys. 12, 1–7 (2018)Google Scholar
  19. 19.
    Chunyan, L.I., Sun, S.H.: Measurement-Device-Independent Quantum Key Distribution Communication in Collective Noise (2016)Google Scholar
  20. 20.
    Kao, S.-H., Yang, C.-W., Hwang, T.: Fault-tolerant controlled deterministic secure quantum communication using EPR states against collective noise. Quantum Inf. Process. 15(11), 4711–4727 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Tsai, C.W., Lin, J.: Fault-tolerant remote quantum entanglement establishment for secure quantum communications. Int. J. Theor. Phys. 55(7), 3200–3206 (2016)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Wei, H., Qiao-Yan, W., Bin, L., Fei, G.: Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels. Chinese. Phyics. B. 24(7), 070308 (2015)CrossRefGoogle Scholar
  24. 24.
    Yang, C.W., Tsai, C.W., Hwang, T.: Fault-tolerant controlled quantum secure direct communication over a collective quantum noise channel. Laser Phys. 24(10), 105203 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sheng-lan Wang
    • 1
  • Shun Zhang
    • 1
  • Qing Wang
    • 1
  • Run-hua Shi
    • 1
    Email author
  1. 1.School of Computer Science and TechnologyAnhui UniversityHefei CityChina

Personalised recommendations