Advertisement

Superradiance and Collective Gain in the Atom-Assisted Multimode Optomechanical System

  • Yan HanEmail author
  • Lin Xue
  • Jun Zhang
Article

Abstract

We investigate that the muti-mode optomechanical system coupled with the two-level atoms. If the driving pump field is resonance with the anti-Stokes sideband, the system is at the superradiative state. For the driving filed in the Stokes sideband, the collective gain can be observed. We study a scheme that how the atomic medium affect these superradiance and collective gain. Our results show that the presence of the atom can enhance the superradiant behavior. In the mode splitting regime, the mode splits into thirds with the presence of the atoms with the anti-Stokes sideband. In addition, we also show that the use of atoms in this system could provide us a way to switch the system form superradiative state to collective gain.

Keywords

Superradiance Collective gain Atoms Optomechanical system Stokes sideband Anti-stoke sideband 

Notes

Acknowledgments

Acknowledgments: Y. Han is supported by special fund of theoretical physics under Grant numbers 11547134. L. Xue is supported by special fund of theoretical physics under Grant numbers 11547213. J. Zhang is supported by the National Natural Science Foundation of China Grant numbers 11747126 and Youth Foundation of Taiyuan University of Technology (No. 2017QN13).

References

  1. 1.
    Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Aspelmeyer, M., Meystre, P., Schwab, K.: Quantum optomechanics. Phys. Today 65, 29 (2012)CrossRefGoogle Scholar
  3. 3.
    Kippenberg, T.J., Vahala, K.J.: Science 321, 1172 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Safavi-Naeini, A.H., Chan, J., Hill, J.T., Mayer Alegre, T.P., Krause, A., Painter, O.: Mayer Physics. Rev. Lett. 108, 033602 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Palomaki, T.A., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Science 344, 1486 (2014)CrossRefGoogle Scholar
  6. 6.
    Buchmann, L.F., Zhang, L., Chiruvelli, A., Meystre, P.: Physics. Rev. Lett. 108, 210403 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Tan, H., Bariani, F., Li, G., Meystre, P.: Phys. Rev. A 88, 023817 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Physics. Rev. Lett. 99, 093902 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Vitali, D., Gigan, S., Ferreira, A., Bohm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Phys. Rev. Lett. 98, 030405 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Agarwal, G.S.: Phys. Rev. A 81, 041803 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Huang, S.M., Agarwal, G.S.: Phys. Rev. A 81, 053810 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Andrews, R.W., Peterson, R.W., Purdy, T.P., Cicak, K., Simmonds, R.W., Regal, C.A., Lehnert, K.W.: Nat. Phys. 10, 321 (2014)CrossRefGoogle Scholar
  13. 13.
    Andrews, R.W., Reed, A.P., Cicak, K., Teufel, J.D., Lehnert, K.W.: Nat. Commun. 6, 10021 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Balram, K.C., Davanco, M.I., Song, J.D., Srinivasan, K.: Nat. Photon. 10, 346 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Lecocq, F., Clark, J.B., Simmonds, R.W., Aumentado, J., Teufel, J.D.: Phys. Rev. Lett. 116, 043601 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Han, Y., Zhang, W.Z., Cheng, J., Zhou, L.: Int. J. Quantum Information. 12, 1450005 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dong, C.H., Zhang, J.T., Fiore, V., Wang, H.L.: Optica 1, 425 (2014)CrossRefGoogle Scholar
  18. 18.
    Pontin, A., Bonaldi, M., Borrielli, A., Marconi, L., Marino, F., Pandraud, G., Prodi, G.A., Sarro, P.M., Serra, E., Marin, F.: Phys. Rev. Lett. 116, 103601 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Rehaily, A.A., Bougouffa, S.: Int. J. Theor. phys. 56, 1399 (2017)CrossRefGoogle Scholar
  20. 20.
    Vostrosablin, N., Rakhubovsky, A.A., Filip, R.: Phys. Rev. A 94, 063801 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Rips, S., Kiffner, M., Wilson-Rae, I., Hartmann, M.J.: New J. Phys. 14, 023042 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Stannigel, K., Rabl, P., Sorensen, A.S., Zoller, P., Lukin, M.D.: Phys. Rev. Lett. 105, 220501 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Ludwig, M., Marquardt, F.: Phys. Rev. Lett. 111, 073603 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Buchmann, L.F., Stamper-Kurn, D.M.: Phys. Rev. A 92, 013851 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Shkarin, A.B., Flowers-Jacobs, N.E., Hoch, S.W., Kashkanova, A.D., Deutsch, C., Reichel, J., Harris, J.G.E.: Phys. Rev. Lett. 112, 013602 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Cortese, E., Lagoudakis, P.G., De Liberato, S.: Phys. Rev. Lett. 119, 043604 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Han, Y., Cheng, J., Zhou, L.: Int. J. Theor. phys. 20, 7748 (2014)Google Scholar
  28. 28.
    Kipf, T., Agarwal, G.S.: Phys. Rev. A 90, 053808 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    He, L., Liu, Y.X., Yi, S., Sun, C.P., Nori, F.: Phys. Rev. A 75, 063818 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Agarwal, G.: Quantum Optics. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  31. 31.
    Walls, D., Milburn, G.: Quantum Optics, SpringerLink: Springer e-Books. Springer, New York (2008)CrossRefGoogle Scholar
  32. 32.
    Suh, J., Weinstein, A.J., Lei, C.U., Wollman, E.E., Steinke, S.K., Meystre, P., Clerk, A.A., Schwab, K.C.: Science 344, 1262 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic TechnologyTaiyuan University of TechnologyTaiyuanChina
  2. 2.College of Data ScienceTaiyuan University of TechnologyTaiyuanChina
  3. 3.College of Mathematics, Institute of MathematicsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations