Advertisement

A Quantum Image Watermarking Scheme Based on Two-Bit Superposition

  • Yang Zhou
  • Ri-Gui Zhou
  • XingAo Liu
  • GaoFeng Luo
Article

Abstract

Quantum watermarking technology protects copyright by embedding an invisible quantum signal in quantum multimedia data. This paper proposes a two-bit superposition method which embeds a watermark image (or secret information) into a carrier image. Firstly, the bit-plane is used to encrypt the watermark image. At the same time, the quantum expansion method is used to extend the watermark image to the same size with the carrier image, and then the image is encrypted through the Fibonacci scramble method again. Secondly, the first proposed method is the two bits of the watermark image which is embedded into the carrier image in accordance with the order of the high and lowest qubit, and the second proposed method which is the high bit of the watermark image is embedded to the lowest bit. Then the lowest bit of the watermark image is embedded in carrier image. Third, the watermark image is extracted through 1-CNOT and swap gates, and the watermark image is restored by inverse Fibonacci scramble, inverse expansion method and inverse bit-plane scramble method. Finally, for the validation of the proposed scheme, the signal-to-noise ratio (PSNR), the image histogram and the robustness of the two watermarking methods are analyzed.

Keywords

Superposition Swap gates Fibonacci scramble Robustness Bit-plane scramble 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61463016, “Science and technology innovation action plan” of Shanghai in 2017 under Grant No. 17510740300, and the advantages of scientific and technological innovation team of Nanchang City under Grant No. 2015CXTD003;

References

  1. 1.
    N, X., Zhu, J., D, L., et al.: Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system. Phys. Rev. Lett. 108(13), 130501 (2012)CrossRefGoogle Scholar
  2. 2.
    Van d, S.T., Wang, Z.H., Blok, M.S., et al.: Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature. 484(7392), 82–86 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Pla, J.J., Tan, K.Y., Dehollain, J.P., Lim, W.H., Morton, J.J.L., Jamieson, D.N., Dzurak, A.S., Morello, A.: A single-atom electron spin qubit in silicon. Nature. 489(7417), 541–545 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Fijany, A., Williams, C.P.: Quantum wavelet transforms: fast algorithms and complete circuits. Lect. Notes Comput. Sci. 1509, 10–33 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tseng C C., Hwang T M.: Quantum circuit design of 8×8 discrete cosine transform using its fast computation flow graph// IEEE International Symposium on Circuits and Systems. IEEE. 1, 828-831(2005)Google Scholar
  6. 6.
    Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 16–42 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Yang, Y.G., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Song, X.H., Wang, S., Liu, S., Abd el-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Song, X., Wang, S., El-Latif, A.A.A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Systems. 22(2), 273–274 (2016)CrossRefGoogle Scholar
  11. 11.
    Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRefGoogle Scholar
  12. 12.
    Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf Process. 15(5), 1849–1864 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Sang, J., Wang, S., Li, Q.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, R.G., Zhou, Y., Zhu, C., Wei, L., Zhang, X., Ian, H.: Quantum watermarking scheme based on INEQR. Int. J. Theor. Phys. 57(4), 1120–1131 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yuan, S., Mao, X., Zhou, J., Wang, X.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys. 56(8), 2495–2511 (2017)CrossRefGoogle Scholar
  16. 16.
    Li, P., Xiao, H.: An improved filtering method for quantum color image in frequency domain. Int. J. Theor. Phys. 57(1), 258–278 (2018)CrossRefGoogle Scholar
  17. 17.
    Mastriani, M.: Quantum Boolean image denoising. Quantum Inf. Process. 14(5), 1647–1673 (2015)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hua, T., Chen, J., Pei, D., Zhang, W., Zhou, N.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)CrossRefGoogle Scholar
  19. 19.
    Song, X.H., Wang, S., El-Latif, A.A.A., et al.: Quantum image encryption based on restricted geometric and color transformations. Quantum Inf. Process. 13(8), 1765–1787 (2014)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhou, N., Hu, Y., Gong, L., et al.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 1–23 (2017)ADSMathSciNetzbMATHGoogle Scholar
  21. 21.
    Zhang, Y., Lu, K., Gao, Y., Wang, M.: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Ping, F., Zhou, R.-G., Jing, N., Li, H.-S.: Geometric transformations of multidimensional color images based on NASS. Inf Sci. 340–341 (2016)Google Scholar
  23. 23.
    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ri-gui, Z., Ya Juan, S., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Ri-Gui, Z., Wenwen, H., Ping, F.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9), 212–233 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jianzhi, S., Shen, W., Qiong, L.: Least significant qubit algorithm for quantum images. Quantum Inf. Process. 15(11), 4441–4460 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Caraiman, S., Vasile, M.: Histogram-based segmentationof quantum image. Theor. Comput. Sci. 529, 46–60 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information EngineeringShanghai Maritime UniversityShanghaiChina

Personalised recommendations