Influence of Magnetic Field on Qutrit Teleportation under Intrinsic Decoherence

  • Negar NaderiEmail author
  • Mojtaba Jafapour


We study qutrit teleportation through a qutrit xyz chain, in the presence of intrinsic decoherence and a non-homogeneous magnetic field. We study the effects of intrinsic phase change, magnetic field and entanglement of the initial state of the channel. It is observed that while the intrinsic phase change and the non-homogeneity of the magnetic field have adverse effects on the teleportation fidelity, the entanglement of the initial state of the channeled enhances the latter. Moreover, the intrinsic decoherence may remove the ripples from the time curve that is delivered by the Schrödinger channel.


Qutrit Teleportation Intrinsic decoherence Environmental decoherence, Entangled state Product state Fidelity, Homogeneous magnetic field, Inhomogeneous magnetic field 


  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., Divincenzo, D.P.: Quantuminformation and computation. Nature. 404, 247–255 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gisin, N., Thew, R.: Quantum communication. Nat. Photonics. 1, 165–171 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A. 57, 120 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B. 59, 2070 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Mattis, D.C.: The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  8. 8.
    Chen, S., Wang, L., Gu, S.-J., Wang, Y.: Fidelity and quantum phase transition for the Heisenberg chain with next-nearest neighbor interaction. Phys. Rev. E. 76(1–4), 061108 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Ye, Y.: Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain. Phys. Lett. A. 309(3–4), 215–217 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Li, S.-B., Xu, J.-B.: Magnetic field effects on the optimal fidelity of standard teleportation via the two qubits Heisenberg XX chain in thermal equilibrium. arXiv:quant-ph/0312125 (2004)Google Scholar
  11. 11.
    Yeo, Y., Liu, T., Lu, Y.-E., Yang, Q.-Z.: Quantum teleportation via a two-qubit Heisenberg XY chain—effects of anisotropy and magnetic field. J. Phys. A Math. Gen. 38(14), 3235 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hao, X., Zhu, S.: Entanglement teleportation through 1D Heisenberg chain. Phys. Lett. A. 338(3–5), 175–181 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    He, Z., Zuhong, X.Y.Z.: Influence of intrinsic decoherence on quantum teleportation via two-qubit Heisenberg XYZ chain. Phys. Lett. A. 354, 79–83 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Javad Akhtarshenas, S., Kheirandish, F., Mohammadi, H.: Influence of Dephasing on the Entanglement Teleportation via a two-qubit Heisenberg XYZ system. The European Physical Journal D. 62(3), 439–447 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Zidan, N.: Quantum teleportation via two-qubit Heisenberg XYZ chain. Can. J. Phys. 92, 406–411 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Qin, M., Ren, Z.-Z.: Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 14(6), 2055–2066 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A. 44(9), 5401–5406 (1991)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Guo, J.-L., Xia, Y., Song, H.-S.: Effects of Dzyaloshinski–Moriya anisoyropic antisymmetric interaction on entanglement and teleportation in a two-qubit Heisenberg chain with intrinsic decoherence. Opt. Commun. 281, 2326–2330 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Delgado, A., Saavedra, C., Retamal, J.C.: Quantum information and entanglement transfer for qutrits. Phys. Lett. A. 370(1), 22–27 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Mei-Yu, W., Feng-Li, Y.: Probabilistic chain teleportation of a qutrit-state. Commun. Theor. Phys. 54(2), 263 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Chamoli, A & Bhandari, C. M.: Entanglement teleportation by qutrits. arXiv:quant-ph/0702223 (2007)Google Scholar
  22. 22.
    Jafarpour, M., Naderi, N.: Qutrit teleportation under intrinsic decoherence. International Journal of Quantum Information. 14(5), 1650028 (2016)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Jami, S., Amerian, Z.: Thermal entanglement of a qubit-qutrit chain. IJRAP. 3(2), 75–84 (2014)CrossRefGoogle Scholar
  24. 24.
    Liang, Q., An-Min, W., Xiao-San, M.: Effect of Intrinsic Decoherence of Milburn’s Model on Entanglement of Two-Qutrit States. Commun. Theor. Phys. 49(2), 516–520 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Bowen, G., Bose, S.: Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity. Phys. Rev. Lett. 87, 267901 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Arvind, K.S.M., Mukunda, N.: A generalized Pancharatnam geometric phase formula for three level quantum systems. J. Phys. A Math. Gen. 30(7), 2417 (1997)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    An, N.B.: Teleportation of two-quNit entanglement: Exploiting local resources. Phys. Lett. A. 9–14, 341 (2005)zbMATHGoogle Scholar
  28. 28.
    Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41(12), 2315–2323 (1994)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentShahid Chamran UniversityAhvazIran

Personalised recommendations