Advertisement

Robust Coplanar Full Adder Based on Novel Inverter in Quantum Cellular Automata

  • Mersede Zahmatkesh
  • Sepehr Tabrizchi
  • Somaye Mohammadyan
  • Keivan Navi
  • Nader Bagherzadeh
Article
  • 12 Downloads

Abstract

Quantum dot cellular automata (QCA) is one of the nano-scale computing paradigms which promises high speed and ultra-low power consumption. Since the one-bit full adder is a fundamental building block of arithmetic circuits, designing an efficient QCA full adder cell is very imperative in this new technology. In this paper, we propose a QCA full adder using a new inverter gate which leads to reduced complexity and area occupation. The proposed layout is simulated by the QCA designer engines. We also provide a performance comparison of our proposed QCA full adder with the previous relevant designs. Furthermore, a detailed analysis of energy dissipation is performed which demonstrates the superiority of the proposed design in terms of the energy efficiency.

Keywords

Quantum-dot cellular automata One-bit full-adder cell Inverter gate Energy dissipation 

References

  1. 1.
    Moore, G.E.: Cramming more components onto integrated circuits. Electronics. 38(8): 114–117, ed, (1965)Google Scholar
  2. 2.
    Haron, N.Z., Hamdioui, S.: Why is CMOS scaling coming to an END?, in 2008 3rd International Design and Test Workshop, pp. 98–103, (2008)Google Scholar
  3. 3.
    Ghani, T., Mistry, K., Packan, P., Thompson, S., Stettler, M., Tyagi, S., et al.: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors, in VLSI Technology, 2000. Digest of Technical Papers. 2000 Symposium on, 2000, pp. 174–175Google Scholar
  4. 4.
    Taheri, M., Akbar, R., Safaei, F., Moaiyeri, M.H.: Comparative analysis of adiabatic full adder cells in CNFET technology. Engineering Science and Technology, JESTECH. 19, 2119–2128 (2016)CrossRefGoogle Scholar
  5. 5.
    Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G., Lent, C., et al.: Quantum-dot cellular automata. J. Vac. Sci. Technol. A. 17, 1394–1398 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4, 49–57 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Barnes, S.J.: The mobile commerce value chain: analysis and future developments. Int. J. Inf. Manag. 22, 91–108 (2002)CrossRefGoogle Scholar
  8. 8.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Snider, G.L., Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Amlani, I., Bernstein, G.H., et al.: Quantum-dot cellular automata: introduction and experimental overview, in Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, 2001, pp. 465–470Google Scholar
  11. 11.
    Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Lent, C.S., Tougaw, P.D., Porod, W.: Quantum cellular automata: the physics of computing with arrays of quantum dot molecules, in Physics and Computation, 1994. PhysComp'94, Proceedings., Workshop on, 1994, pp. 5–13Google Scholar
  13. 13.
    Kim, K., Wu, K., Karri, R.: Towards designing robust QCA architectures in the presence of sneak noise paths, in Proceedings of the conference on Design, Automation and Test in Europe-Volume 2:1214–1219, (2005)Google Scholar
  14. 14.
    Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE TCAD. 27, 34–44 (2008)CrossRefGoogle Scholar
  15. 15.
    Kyosun, K., Kaijie, W., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89, 1607–1614 (2006)ADSGoogle Scholar
  16. 16.
    Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B. 19, 1752–1755 (2001)CrossRefGoogle Scholar
  17. 17.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85, 541–557 (1997)CrossRefGoogle Scholar
  18. 18.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85, 8281–8286 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    Devadoss, R., Paul, K., Balakrishnan, M.: Clocking-based coplanar wire crossing scheme for QCA, in VLSI Design, 2010. VLSID'10. 23rd International Conference on, pp. 339–344, (2010)Google Scholar
  21. 21.
    Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. JOLPE. 10, 259–271 (2014)CrossRefGoogle Scholar
  22. 22.
    Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders, in Nanotechnology, 2003. IEEE-NANO 2003. 2003 Third IEEE Conference on, pp. 461–464, (2003)Google Scholar
  23. 23.
    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14, 497–504 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Azghadi, M.R., Kavehei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders. J. Appl. Sci. 7, 3460–3468 (2007)CrossRefGoogle Scholar
  25. 25.
    Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. IJHPSA. 5, 202–208 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Xie, G., Sun, M., Lv, H.: An efficient module for full adders in quantum-dot cellular automata. Int. J. Theor. Phys. 57, 3005–3025 (2018)CrossRefGoogle Scholar
  27. 27.
    Farazkish, R., Azghadi, M.R., Navi, K., Haghparast, M.: New method for decreasing the number of quantum dot cells in QCA circuits. World Appl. Sci. J. 6, 793–802 (2008)Google Scholar
  28. 28.
    Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata, in 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP), pp. 391–396, (2007)Google Scholar
  29. 29.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80, 1404–1414 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication December/2018

Authors and Affiliations

  1. 1.Department of EngineeringKhatam UniversityTehranIran
  2. 2.School of Computer ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Faculty of Computer Science and EngineeringShahid Beheshti University, GCTehranIran
  4. 4.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations