Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 2, pp 591–604 | Cite as

A New Quantum Proxy Signature Model Based on a Series of Genuine Entangled States

  • Hai-Yan Zhang
  • Long Zhang
  • Ke-Jia ZhangEmail author
Article

Abstract

Quantum proxy signature(QPS) is one of the most important topics in quantum signature. In this paper, we propose a new and general model of QPS based on genuine entangled Nj-qubit (3 ≤ Nj ≤ 6,NjN,j = 1,2,3,4.) states. In our model, only the teleportation of multiparty entangled states and quantum one-time pad(QOTP) encryption algorithm have been applied to ensure the security. We hope our results will be helpful to the research of quantum signature in future.

Keywords

Quantum proxy signature model Genuine entangled states Unforgeability Undeniability 

Notes

Acknowledgements

This work is supported by Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, Youth Foundation of Heilongjiang University under Grant No.QL201501, and Hei Long Jiang Postdoctoral Foundation Grant No.LBH-Z17048; Graduates Innovation Scientific Research Foundation of Heilongjiang University under Grant No.YJSCX2017-180HLJU.

References

  1. 1.
    Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The digital distributed system security architecture. In: Proceedings of national computer security conference, pp. 305-319 (1989)Google Scholar
  2. 2.
    Mambo, M, Usuda, K, Okamoto, E.: Proxy signatures: delegation of the power to sign messages. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 79 (9), 1338–1354 (1996)Google Scholar
  3. 3.
    Kim, S., Park, S., Won, D.: Proxy signatures revisited. In: Proceedings of information and communications security (ICICS97), LNCS 1334, Springer, pp. 223-232 (1997)Google Scholar
  4. 4.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th annual ACM symposium on Theory of computing. ACM, pp. 212–219 (1996)Google Scholar
  5. 5.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G.: . In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp 175–179. IEEE Press, New York (1984)Google Scholar
  7. 7.
    Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Sci. 283(5410), 2050–2056 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecomfiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  13. 13.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Wei, C., Cai, X., Liu, B., et al.: A generic construction of Quantum-Oblivious-Key-Transfer-Based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Liu, B., Gao, F., Huang, W.: QKD-Based quantum private query without a failure probability. Sci. China-Phys. Mech. Astron. 58, 100301 (2015)CrossRefGoogle Scholar
  16. 16.
    Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20, 17411 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Wei, C., Gao, F., Wen, Q.Y., Wang, T.Y.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, J.L., Guo, F.Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Lin, S., Wen, Q.-Y., Gao, F., et al.: Quantum secure direct communication with Chi-type entangled states. Phys. Rev. A 78, 064304 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Fei, G, Qiao-Yan, W., Fu-Chen, Z.: Teleportation attack on the QSDC protocol with a random basis and order. Chinese Phys. B 17(9), 3189 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Gao, F, Qin, S., Wen, QY, et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Lin, S., Guo, G., Xu, Y., Sun, Y., Liu, X.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(06), 2016 (2343)Google Scholar
  23. 23.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)
  24. 24.
    Barnum, H., Crpeau, C., Gottesman, D., et al.: Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE symposium on foundations of computer science. IEEE. pp. 449–458 (2002)Google Scholar
  25. 25.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature gainst the forgery attack. Quantum Inf. Process. 12(8), 2655–2699 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process 16(3), 70 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gao, F., Qin, S., Guo, F., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(02), 2344 (2011)Google Scholar
  29. 29.
    Kim, T., Lee, H., Lee, S.: Forgeable quantum messages in arbitrated quantum signature schemes. Quantum Inf. Process 16, 268 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283(16), 3198–3201 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phy. B 19(6), 060307 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Wang, T.Y., Cai, X.Q.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process. 13(8), 1677–1685 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lin, S., Yu, C.H., Guo, G.D.: Reexamining the security of fair quantum blind signature schemes. Quantum Inf. Process 13(11), 2407–2415 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Zhang, K., Song, T., Zuo, H., et al.: A secure quantum group signature scheme based on Bell states. Physica Scripta 87(4), 045012 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Xu, G.B., Zhang, K.J.: A novel quantum group signature scheme without using entangled states. Quantum Inf. Process 14(7), 2577–2587 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. China, Ser. G 51(8), 1079–1088 (2008)zbMATHCrossRefGoogle Scholar
  38. 38.
    Zhou, J.X., Zhou, Y.J., Niu, X.X., et al.: Quantum proxy signature scheme with public verifiability. Sci. China, Ser. G 54(10), 1828–1832 (2011)CrossRefGoogle Scholar
  39. 39.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc. 11(2), 455–463 (2012)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Yang, C.W., Luo, Y.P., Hwang, T.: Forgery attack on one-time proxy signature and the improvement. Quant. Inf. Process 13(9), 2007–2016 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Wang, T.Y., Wei, Z.L.: Analysis of forgery attack on one-time proxy signature and the improvement. Int. J. Theor. Phys. 55(2), 743–745 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)zbMATHCrossRefGoogle Scholar
  43. 43.
    Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six qubits state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Zhang, L., Zhang, H.Y., Zhang, K.J., et al.: The security analysis and improvement of some novel quantum proxy signature schemes. Int. J. Theor. Phys. 56 (6), 1983–1994 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Einstein, A., Podolsky, B., Rosen, N.: Can Quantum-Mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 696–702 (1935)zbMATHCrossRefGoogle Scholar
  46. 46.
    Thapliyal, A.V.: Multipartite pure-state entanglement. Phys. Rev. A 59(5), 3336–3342 (1999)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Horodecki, R., Horodecki, P., Horodecki, M., et al.: Quantum entanglement. Introduction to quantum information science, pp 865–942. Springer, Berlin (2009)zbMATHGoogle Scholar
  48. 48.
    Bouwmeester, D., Pan, J.W., Daniell, M., et al.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82(7), 1345 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Li, M.L., Liu, J.J., Hong, W.N.: Quantum information splitting of a single-qubit via genuine four-qubit entangled states. Acta Sin Quantum Opt. 19(2), 141–145 (2013)Google Scholar
  50. 50.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 052306 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    Borras, A., Plastino, A.R., Batle, J., et al.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40(44), 13407 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101 (20), 208901 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    Wang, T., Wen, Q., Gao, F., et al.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373(1), 65–68 (2008)ADSzbMATHCrossRefGoogle Scholar
  55. 55.
    Qin, S., Gao, F., Wen, Q.Y., et al.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101–103 (2006)ADSzbMATHCrossRefGoogle Scholar
  56. 56.
    Wjcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    Cai, Q.: The Ping-Pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77(1), 014302 (2008)ADSCrossRefGoogle Scholar
  59. 59.
    Fei, G., Song, L., Qiao-Yan, W., et al.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25(5), 1561 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    Gao, F., Qin, S., Wen, Q.Y., et al.: A simple participant attack on the brdler-dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Wang, T.Y., Wen, Q.Y.: Security of a kind of quantum secret sharing with single photons. Quantum Inf. Comput. 11(5), 434–443 (2011)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Chen, X.B., Yang, S., Su, Y., et al.: Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state. Physica Scripta 86(5), 055002 (2012)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex SystemsHarbinChina
  3. 3.School of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina

Personalised recommendations