High-Dimensional Bell State Analysis for Photon-Atoms Hybrid System

  • Lingyan He
  • Tiejun WangEmail author
  • Chuan Wang


High-dimensional Bell state analysis (HDBSA) has great application potential in the high-capacity quantum communication and quantum information processing. In this paper, we propose a scheme to completely distinguish the 2N-dimensional Bell states of a hybrid system with the help of the nonlinear interaction between the Λ-type atoms and a photon system. We use the unit-probability quantum teleportation with non-maximum entanglement as an example to show the application of HDBSA. Finally, we discuss its possible realization with current experimental techniques. Our HDBSA protocol may pave a new way for high-capacity long-distance quantum communication.


Bell state analysis High dimension 



This work was supported by the National Natural Science Foundation of China through Grants (No. 61671083 and No. 61471050), Beijing University of Posts and Telecommunications Excellent PhD Students Foundation (No. CX2016209), the Open Research Fund Program of State Key Laboratory of Low-Dimensional Quantum Physics (No.KF201610); and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China.


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Zhan, Y.B.: Controlled teleportation of high-dimension quantumstates with generalized Bell-state measurement. Chinese Phys. 16, 1009–1963 (2007)Google Scholar
  3. 3.
    Cai, T., Jiang, M.: Improving the teleportation scheme of three-qubit state with a four-qubit quantum channel. Int. J. Theor. Phys. 57, 131–137 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Xu, L.S., Yong, X.L., Yang, J.Q., Zhao, P.R., Tao, Y.H.: Unknown two particles teleportation using a special two-particle quantum channel. Int. J. Theor. Phys. 57, 381–387 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ma, P.C., Chen, G.B., Li, X.W., Zhan, Y.B.: Bidirectional controlled quantum teleportation in the three-dimension system. Int. J. Theor. Phys. 57, 2233–2240 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Karimipour, V., Alireza, B.: Quantum key distribution for d-level systems with generalized Bell states. Phys. Rev. A 65, 052331 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: Security of quantum key distribution using d-Level systems. Phys. Rev. L 88, 127902 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Walborn, S.P., Lemelle, D.S., Almeida, M.P., Souto Ribeiro, P.H.: Quantum key distribution with higher-order alphabets using spatially encoded qudits. Phys. Rev. Lett. 96, 090501 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Zhu, F., Zhang, Z.W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 22 (2017)CrossRefGoogle Scholar
  12. 12.
    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Cao, Z.W., Song, D., Peng, J.Y., He, C., Feng, J.: High security quantum secure direct communication protocol based on three-particle GHZ states. In: IEEE 17th International Conference on Nanotechnology (IEEE-NANO) (2017)Google Scholar
  14. 14.
    Long, G.L., Wang, C., Deng, F.G., Zheng, C.: Quantum secure direct communication. Conf. Coherence Quant. Opt. M6, 42 (2013)Google Scholar
  15. 15.
    Yang, Y., Jiang, M., Zhou, L.L.: Improving the teleportation scheme of five-qubit state with a seven-qubit quantum channel. Int. J. Theor. Phys. 57, 3485–3491 (2018)CrossRefGoogle Scholar
  16. 16.
    Yu, Q, Zhang, Y.B., Li, J.: Generic preparation and entanglement detection of equal superposition states. Sci. China-Phys. Mech. Astron. 60(7), 070313 (2017)CrossRefGoogle Scholar
  17. 17.
    Wang, C., Shen, W.W., Mi, S.C., Zhang, Y., Wang, T.J.: Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bull. 60(23), 2016–2021 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhang, K. J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks-deterministic quantum operation sharing schemes with Bell states. Sci. China-Phys. Mech. Astron. 59(6), 660302 (2016)CrossRefGoogle Scholar
  19. 19.
    Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62(14), 1025–1029 (2017)CrossRefGoogle Scholar
  20. 20.
    Zhu, F, Zhang, W, Sheng, Y, Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)CrossRefGoogle Scholar
  21. 21.
    Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–68 (2017)CrossRefGoogle Scholar
  22. 22.
    Wang, H., Ren, B.C., Wang, A.H., Alsaedi, A., Hayat, T., Deng, F.G.: General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys. 13(5), 130315 (2018)CrossRefGoogle Scholar
  23. 23.
    Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light: Sci. App. 5(9), e16144 (2016)CrossRefGoogle Scholar
  24. 24.
    Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China-Phys. Mech. Astron 60(12), 120313 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev Lett. 108(13), 130503 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication, arXiv:1805.07228 (2018)
  27. 27.
    Ma, Y.M., Wang, T.J.: High-dimensional controlled-phase gate between a 2N-dimensional photon and the N three-level artificial atoms. Int. J. Theor. Phys. 56(10), 3068–3083 (2017)CrossRefGoogle Scholar
  28. 28.
    Sheng, Y.B., Zhou, L.: Two-step complete polarization logic Bell-state analysis. Sci. Rep. 5, 13453 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Zhou, L., Sheng, Y.B.: Complete logic Bell-state analysis assisted with photonic Faraday rotation. Phys. Rev. A 92, 042314 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Cao, C., Chen, X., Duan, Y.W., Fan, L., Zhang, R., Wang, T.J., Wang, C.: Concentrating partially entangled W-class states on nonlocal atoms using low-Q optical cavity and linear optical elements. Sci. China-Phys. Mech. Astron. 59, 100315 (2016)CrossRefGoogle Scholar
  31. 31.
    Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China-Phys. Mech. Astron. 58(6), 060301 (2015)CrossRefGoogle Scholar
  32. 32.
    Shi, B.S., Jiang, Y.K., Guo, G.C.: Probabilistic teleportation of two-particle entangled state. Phys. Lett. A 268, 161–164 (2000)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Pati, A.K., Agrawal, P.: Probabilistic teleportation of a qudit. Phys. Lett. A 371(3), 185–189 (2007)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Tao, Y.H., Zheng, J.H.: Probabilistic controlled teleportation of two-particle entangled state via the optimal quantum state. Int. J. Theor. Phys. 52(6), 2001–2007 (2013)CrossRefGoogle Scholar
  35. 35.
    Augusiak, R., Horodecki, P.: Generalized simolin states and their properties. Phys. Rev. A 73, 012318 (2006)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation via several kinds of three-qubit states. Sci. in China Ser. G 51(10), 1529–1556 (2008)CrossRefGoogle Scholar
  37. 37.
    Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. Assoc. 84, 50001 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Kumar, A., Adhikari, S., Banerjee, S. , Roy, S.: Optimal quantum communication using multiparticle partially entangled states. Phys. Rev. A 87, 022307 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    Dixon, P.B., Howland, G.A., Schneeloch , J., Howell, J.C.: Quantum mutual information capacity for high dimensional entangled states. Phys. Rev. Lett. 108, 143603 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Massar, S.: Nonlocality, closing the detection loophole, and communication complexity. Phys. Rev. A 65, 032121 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Ionicioiu, R., Spiller, T.P., Munro, W.J.: Generalized Toffoli gates using qudit catalysis. Phys. Rev. A 80, 012312 (2009)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    Walborn, S., Padua, P.S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    Cerf, N.J.: Pauli cloning of a qantum bit. Phys. Rev. Lett. 84, 4497 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Svozilik, J., Perina, J.J., Torres, J.P.: High spatial entanglement via chirped quasiphase-matched optical parametric down-conversion. Phys. Rev. A 86(5), 052318 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    He, L.Y., Wang, T.J., Wang, C.: Construction of high-dimensional universal quantum logic gates using a Λ, system coupled with a whispering-gallery-mode microresonator. Opt. Express 24, 265410 (2016)ADSGoogle Scholar
  55. 55.
    Rokhsari, H., Vahala, K.J.: Ultralow loss, high Q, four port resonant couplers for quantum optics and photonics. Phys. Rev. Lett. 92, 253905 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    Monifi, F., Friedlein, J., Ozdemir, S.K., Yang, L.: A robust and tunable add-drop filter using whispering gallery mode microtoroid resonator. J. Lightwave Technol. 30, 3306–3315 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Maurer, P.C., Kucsko, G., Latta, C., Jiang, L., Yao, N.Y., Bennett, S.D., Pastawski, F., Hunger, D., Chisholm, N., Markham, M., Twitchen, D.J., Cirac, J.I., Lukin, M.D.: Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    Waldherr, G., Wang, Y., Zaiser, S., Jamali, M., Schulte-Herbrueggen, T., Abe, H., Ohshima, T., Isoya, J., Du, J.F., Neumann, P., Wrachtrup, J.: Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    Pfaff, W., Hensen, B., Bernien, H., van Damm, S.B., Blok, M.S., Taminiau, T.H., Tiggelman, M.J., Schouten, R.N., Markham, M., Twitchen, D.J., Hanson, R.: Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    Childress, L.I., Taylor, J.M., Sorensen, A., Lukin, M.D.: Faulttolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 052330 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    Nemoto, K., Trupke, M., Devitt, S.J., Stephens, A.M., Scharfenberger, B., Buczak, K., Nöauer, T., Everitt, M.S., Schmiedmayer, J., Munro, W.J.: Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014)Google Scholar
  63. 63.
    Barclay, P.E., Fu, K.M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanable, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., et al.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383 (2009)ADSCrossRefGoogle Scholar
  66. 66.
    Bernien, H., Hensen, B., Pfaff, W., Koolstra, G., Blok, M.S., Robledo, L., Taminiau, T.H., Markham, M., Twitchen, D.J., Childress, L., Hanson, R.: Heralded entanglement between solid-state qubits separated by three metres. Nature (London) 497, 86 (2013)ADSCrossRefGoogle Scholar
  67. 67.
    Fuchs, G.D., Dobrovitski, V.V., Toyli, D.M., Heremans, F.J., Awschalom, D.D.: Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.State Key Laboratory of Low-Dimensional Quantum PhysicsBeijingChina

Personalised recommendations