International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 261–274 | Cite as

Amplitude Damping of Hermite-Polynomial-Field Excited Coherent State

  • Chun-cao Zhang
  • Jian-ming Du
  • Gang RenEmail author


We introduce Hermite-polynomial-field excited coherent state (HPFECS) and then investigate analytically its evolution in an amplitude damping channel. We find that it evolves into a Laguerre-polynomial-weighted-chaotic photon field in this process, which turns out to be a new nonclassical state. The Q-function of this novel state is also given.


Hermite-polynomial-field coherent state Amplitude damping channel Infinitive sum representation 



This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2016A672).


  1. 1.
    Alexanian, M.: Nonclassicality criteria: quasi-probability distributions and correlation functions. Phys. Rev. A. 94, 043837 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Wang, Z., Yuan, H.C., Fan, H.Y.: Photon-subtracted squeezed coherent state: nonclassicality and decoherence in phase-sensitive reservoirs. J. Opt. Soc. Am. B. 28, 1964–72 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis Inc, New York (2003)Google Scholar
  4. 4.
    Kim, M., Deoliveira, S., Fa, M., Knight, P.L.: The interaction of displaced number state and squeezed number state fields with 2-Level atoms. J. Mod. Opt. 37, 145–146 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.-M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Sanders, B.C.: Review of entangled coherent states. J. Phys. A: Math. Theor. 45, 244002–1-12 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bose, S., Jacobs, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Ashhab, S., Franco, N.: Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Parigi, V., Zavatta, A., Kim, M.S., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Nha, H., Carmichael, H.J.: Proposed test of quantum nonlocality for continuous variables phys. Rev. Lett. 93, 020–401 (2004)Google Scholar
  13. 13.
    Fiürasek, J.: Engineering quantum operations on traveling light beams by multiple photon addition and subtraction. Phys. Rev. A 80, 053822 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Jia, F., Xu, S., Hu, L.Y., Duan, Z., Huang, J.H.: New approach to generating functions of single- and two-variable even-and odd-Hermite polynomials and applications in quantum optics. Mod. Phys. Lett. B 28(32), 1450249–1-11 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ren, G., Ma, J., Du, J., Yu, H.: Hermite Polynomial’s Photon Added Coherent State and its Non-classical Properties. Int. J. Theor Phys. 55, 2071–2088 (2016)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hu, L.Y., Fan, H.Y.: Two-mode squeezed number state as a two-variable Hermite-polynomial excitation on the squeezed vacuum. J. Mod. Opt. 55, 2011–2024 (2008)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Hu, L., Xu, X., Fan, H.: Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment. J. Opt. Soc, Am. B. 27, 286–299 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Khan, S., Pathan, M.A., Hassan, N.A.M., Yasmin, G.: Implicit summation formulae for Hermite and related polynomials. J. Math. Anal. Appl. 344, 408–416 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ren, G., Du, J., Yu, H., Zhang, X.L., Xu, Y.: Non-classical properties of state generated by the superposition of photon-added even/odd coherent states. Int J Theor Phys 52, 3564–3576 (2013)CrossRefzbMATHGoogle Scholar
  20. 20.
    Barbieri, M., Spagnolo, N., Genoni, M.G., Ferreyrol, F., Blandino, R., Paris, M.G.A., Grangier, P., Tualle-Brouri, R.: Non-Gaussianity of quantum states: An experimental test on single-photon-added coherent states. Phys. Rev. A 82, 063833 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Lvovsky, A.I., Hansen, H., Aichele, T., Benson, O., Mlynek, J., Schiller, S.: Quantum state reconstruction of the Single-Photon fock state. Phys. Rev. Lett. 87, 050402 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Yang, Y., Li, F.L.: Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states. J. Opt. Soc, Am. B. 26, 830–835 (2009)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yang, Y., Li, F.L.: Entanglement Properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Lee, S.Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Hong-Yi, F., Li-Yun, H.: New approach for solving master equations in quantum optics and quantum statistics by virtue of thermo-entangled state representation. Commun. Theor. Phys. 51, 729–742 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fan, H.: Newton–leibniz integration for ket–bra operators in quantum mechanics (IV)—integrations within Weyl ordered product of operators and their applications. Ann. Phys. 323, 500–526 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inf. Comput. 7, 459 (2007)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronic EngineeringHuainan Normal UniversityHuainanChina

Personalised recommendations