International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 184–200 | Cite as

A Novel Adder Circuit Design in Quantum-Dot Cellular Automata Technology

  • Yaser Adelnia
  • Abdalhossein RezaiEmail author


Quantum-dot Cell Automata (QCA) technology is a promising alternative technology for CMOS technology. In this technology, the ultra-dense and low-latency digital circuits are designed. One of the important digital circuits is Full Adder (FA). In this paper, a new and efficient multilayer QCA full adder circuit is designed and evaluated. In the designed full adder circuit, sum and carry output are designed in separated layers. Then, a novel and efficient 4-bit Ripple Carry Adder (RCA) circuit is designed based on this new FA circuit. The proposed QCA circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the proposed 4-bit QCA RCA requires 135 QCA cells, 0.06 μm2 area and 5 clock phases. The comparison shows that the proposed QCA circuits have advantages compared to other QCA circuits in terms of area, latency, and cost.


Quantum-dot cell automata Efficient full adder Ripple carry adder QCADesigner, 3-input XOR gate Multilayer 


  1. 1.
    Karimi, A., Rezai, A.: A design methodology to optimize the device performance in CNTFET. ECS J. Solid State Sci. Technol. 6(8), M97–M102 (2017)Google Scholar
  2. 2.
    Zareiee, M.: A novel high performance nano-scale MOSFET by inserting Si3N4 layer in the channel. Superlattice. Microst. 88, 254–261 (2015)ADSGoogle Scholar
  3. 3.
    Zareiee, M.: Modifying buried layers in nano-MOSFET for achieving reliable electrical characteristics. ECS J. Solid State Sci. Technol. 5(10), M113–M117 (2016)Google Scholar
  4. 4.
    Zareiee, M.: High performance Nano device with reduced Short Channel effects in high temperature applications. ECS J. Solid State Sci. Technol. 6(7), M75–M78 (2017)Google Scholar
  5. 5.
    Zareiee, M., Mehrad, M.: A reliable Nano device with appropriate performance in high temperatures. ECS J. Solid State Sci. Technol. 6(4), M50–M54 (2017)Google Scholar
  6. 6.
    Zareiee, M., Orouji, A.A.: Superior electrical characteristics of novel nanoscale MOSFET with embedded tunnel diode. Superlattice. Microst. 101, 57–67 (2017)ADSGoogle Scholar
  7. 7.
    Mehrad, M.: Reducing floating body and Short Channel effects in Nano scale transistor: inserted P+ region SOI-MOSFET. ECS J. Solid State Sci. Technol. 5(9), M88–M92 (2016)Google Scholar
  8. 8.
    Mehrad, M.: Application of N+ buried layer in reducing lattice temperature of Nano-scale MOSFET. ECS J. Solid State Sci. Technol. 5(12), M158–M162 (2016)Google Scholar
  9. 9.
    Cho, G., Kim, Y.-B., Lombardi, F.: Assessment of CNTFET based circuit performance and robustness to PVT variations. In: Circuits and Systems, 2009. MWSCAS'09. 52nd IEEE International Midwest Symposium on 2009, pp. 1106–1109. IEEE (2009)Google Scholar
  10. 10.
    Shafizadeh, M., Rezai, A.: Improved device performance in a CNTFET using La2O3 high-κ dielectrics. J. Comput. Electron. 16(2), 221–227 (2017)Google Scholar
  11. 11.
    Karimi, A., Rezai, A.: Improved device performance in CNTFET using genetic algorithm. ECS J. Solid State Sci. Technol. 6(1), M9–M12 (2017)Google Scholar
  12. 12.
    Naderi, A., Tahne, B.A.: T-CNTFET with gate-drain overlap and two different gate metals: a novel structure with increased saturation current. ECS J. Solid State Sci. Technol. 5(8), M3032–M3036 (2016)Google Scholar
  13. 13.
    Naderi, A., Ahmadmiri, S.A.: Attributes in the performance and design considerations of asymmetric drain and source regions in carbon Nanotube field effect transistors: quantum simulation study. ECS J. Solid State Sci. Technol. 5(7), M63–M68 (2016)Google Scholar
  14. 14.
    Seminario, J.M., Derosa, P.A., Cordova, L.E., Bozard, B.H.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3(1), 215–218 (2004)ADSGoogle Scholar
  15. 15.
    Abu El-Seoud, A., El-Banna, M., Hakim, M.: On modelling and characterization of single electron transistor. Int. J. Electron. 94(6), 573–585 (2007)Google Scholar
  16. 16.
    Meng, H., Wang, J., Wang, J.-P.: A spintronics full adder for magnetic CPU. IEEE electr. Dev. lett. 26(6), 360–362 (2005)ADSGoogle Scholar
  17. 17.
    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: Computer Applications & Industrial Electronics (ISCAIE), 2017 IEEE Symposium on 2017, pp. 13–16. IEEEGoogle Scholar
  18. 18.
    Kim, K., Wu, K., Karri, R.: Towards designing robust QCA architectures in the presence of sneak noise paths. In: Proceedings of the conference on Design, Automation and Test in Europe-Volume 2 2005, pp. 1214–1219. IEEE Computer Society (2005)Google Scholar
  19. 19.
    Kim, K., Wu, K., Karri, R.: Quantum-dot cellular automata design guideline. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 89(6), 1607–1614 (2006)ADSGoogle Scholar
  20. 20.
    Niemier, M.T.: Designing digital systems in quantum cellular automata. University of Notre Dame (2000)Google Scholar
  21. 21.
    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)ADSGoogle Scholar
  22. 22.
    Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)Google Scholar
  23. 23.
    Swartzlander, E.E., Cho, H., Kong, I., Kim, S.-W.: Computer arithmetic implemented with QCA: A progress report. In: Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on 2010, pp. 1392–1398. IEEE (2010)Google Scholar
  24. 24.
    Liu, W., Lu, L., O'Neill, M., Swartzlander, E.E.: Design rules for quantum-dot cellular automata. In: Circuits and Systems (ISCAS), 2011 IEEE International Symposium on 2011, pp. 2361–2364. IEEE (2011)Google Scholar
  25. 25.
    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)zbMATHGoogle Scholar
  26. 26.
    Mustafa, M., Beigh, M.: Novel Linear Feedback Shift Register Design in Quantum-Dot Cellular Automata. (2014)Google Scholar
  27. 27.
    Perri, S., Corsonello, P., Cocorullo, G.: Design of efficient binary comparators in quantum-dot cellular automata. IEEE Trans. Nanotechnol. 13(2), 192–202 (2014)ADSGoogle Scholar
  28. 28.
    Hayati, M., Rezaei, A.: Design and optimization of full comparator based on quantum-dot cellular automata. ETRI J. 34(2), 284–287 (2012)Google Scholar
  29. 29.
    Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)Google Scholar
  30. 30.
    Rashidi, H., Rezai, A.: Design of Novel Efficient Multiplexer Architecture for quantum-dot cellular automata. J. Nano Electron. Phys. 9(1), 1012–1011 (2017)Google Scholar
  31. 31.
    Waje, M.G., Dakhole, P.: Analysis of various approaches used for the implementation of QCA based full adder circuit. In: Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on 2016, pp. 2424–2428. IEEE (2016)Google Scholar
  32. 32.
    Singh, G.: Design and performance analysis of a new efficient coplanar quantum-dot cellular automata adder. Indian Journal of Pure & Applied Physics (IJPAP). 55(2), 97–103 (2017)ADSGoogle Scholar
  33. 33.
    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)ADSGoogle Scholar
  34. 34.
    Ramesh, B., Rani, M.A.: Design of an Optimal Decimal Adder in quantum dot cellular automata. Int. J. Nanotechnol. Appl. 11(2), 197–211 (2017)Google Scholar
  35. 35.
    Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Univ. Ser. Electron. Energ. 31(2), 279–285 (2018)Google Scholar
  36. 36.
    Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 2017(7), 394–402 (2017)Google Scholar
  37. 37.
    Sen, B., Sahu, Y., Mukherjee, R., Nath, R.K., Sikdar, B.K.: On the reliability of majority logic structure in quantum-dot cellular automata. Microelectron. J. 47, 7–18 (2016)Google Scholar
  38. 38.
    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Mostafaee, A., Rezaei, A., Karkhanehchi, M.M., Jamshidi, S.M.: Design of QCA full adders without wire crossing. Boson J. Modern Phys. 2(2), 90–96 (2015)Google Scholar
  40. 40.
    Sonare, N., Meena, S.: A robust design of coplanar full adder and 4-bit Ripple Carry adder using qunatum-dot cellular automata. In: Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE International Conference on 2016, pp. 1860–1863. IEEE (2016)Google Scholar
  41. 41.
    Pudi, V., Sridharan, K.: Low complexity design of ripple carry and Brent–kung adders in QCA. IEEE Trans. Nanotechnol. 11(1), 105–119 (2012)ADSGoogle Scholar
  42. 42.
    Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)Google Scholar
  43. 43.
    Bishnoi, B., Giridhar, M., Ghosh, B., Nagaraju, M.: Ripple carry adder using five input majority gates. In: Electron Devices and Solid State Circuit (EDSSC), 2012 IEEE International Conference on 2012, pp. 1–4. IEEE (2012)Google Scholar
  44. 44.
    De, D., Das, J.C.: Design of novel carry save adder using quantum dot-cellular automata. J. Comput. Sci. 22, 54–68 (2017)Google Scholar
  45. 45.
    Hashemi, S., Navi, K.: A novel robust QCA full-adder. Proc. Mater. Sci. 11, 376–380 (2015)Google Scholar
  46. 46.
    Jaiswal, R., Sasamal, T.N.: Efficient design of full adder and subtractor using 5-input majority gate in QCA. In: Contemporary Computing (IC3), 2017 Tenth International Conference on 2017, pp. 1–6. IEEE (2017)Google Scholar
  47. 47.
    Kassa, S.R., Nagaria, R.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)Google Scholar
  48. 48.
    Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)Google Scholar
  49. 49.
    Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik-Int. J. Light Electron Opt. 127(20), 8576–8591 (2016)Google Scholar
  50. 50.
    Sasamal, T.N., Singh, A.K., Mohan, A.: An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis. Microprocess. Microsyst. (2018)Google Scholar
  51. 51.
    Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)Google Scholar
  52. 52.
    Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)Google Scholar
  53. 53.
    Roohi, A., Khademolhosseini, H., Sayedsalehi, S., Navi, K.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)Google Scholar
  54. 54.
    Sen, B., Rajoria, A., Sikdar, B.K.: Design of efficient full adder in quantum-dot cellular automata. Sci. World J. 2013, 250802 (2013)Google Scholar
  55. 55.
    Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-Int. J. Light Electron Opt. 158, 243–256 (2018)Google Scholar
  56. 56.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetGoogle Scholar
  57. 57.
    Goswami, M., Mohit, K., Sen, B.: Cost effective realization of XOR logic in QCA. In: Embedded Computing and System Design (ISED), 2017 7th International Symposium on 2017, pp. 1–5. IEEE (2017)Google Scholar
  58. 58.
    Balali, M., Rezai, A.: Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int. J. Theor. Phys. 57(7), 1948–1960 (2018)Google Scholar
  59. 59.
    Safoev, N., Jeon, J.-C.: Full adder based on quantum-dot cellular automata. In proc. Manila Int. Conf. Trends Eng. Technol. (MTET-17), 83–86 (2017)Google Scholar
  60. 60.
    Safoev, N., Jeon, J.-C.: Compact RCA based on multilayer quantum-dot cellular automata. In: Information Systems Design and Intelligent Applications. pp. 515–524. Springer (2018)Google Scholar
  61. 61.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)ADSGoogle Scholar
  62. 62.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49 (1993)ADSGoogle Scholar
  63. 63.
    Niknezhad Divshali, M., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)Google Scholar
  64. 64.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997)Google Scholar
  65. 65.
    Pudi, V., Sridharan, K.: Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE trans. Very Large Scale Integ. (VLSI) Syst. 19(9), 1535–1548 (2011)Google Scholar
  66. 66.
    Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata. In: Application-specific Systems, Architectures and Processors, 2007. ASAP. IEEE International Conf. on 2007, pp. 391–396. IEEE (2017)Google Scholar
  67. 67.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)Google Scholar
  68. 68.
    Arani, I.E., Rezai, A.: Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 1–9 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ACECR Institute of Higher Education, Isfahan BranchIsfahanIran

Personalised recommendations