Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 167–183 | Cite as

New Design of Reversible Full Adder/Subtractor Using R Gate

  • Rasha Montaser
  • Ahmed Younes
  • Mahmoud Abdel-Aty
Article

Abstract

Quantum computers require quantum processors. An important part of the processor of any computer is the arithmetic unit, which performs binary addition, subtraction, division and multiplication, however multiplication can be performed using repeated addition, while division can be performed using repeated subtraction. In this paper we present two designs using the reversible R3 gate to perform the quantum half adder/subtractor and the quantum full adder/subtractor. The proposed half adder/subtractor design can be used to perform different logical operations, such as AND, XOR, NAND, XNOR, NOT and copy of basis. The proposed design is compared with the other previous designs in terms of the number of gates used, the number of constant bits, the garbage bits, the quantum cost and the delay. The proposed designs are implemented and tested using GAP software.

Keywords

Reversible gates Quantum processors Arithmetic unit Reversible adder Reversible subtractor 

References

  1. 1.
    Ni, L., Guan, Z., Zhu, W.: A general method of constructing the reversible full-adder. Third Internatinal Symposium on Information Technology and Security Informatics. IEEE, 109–113 (2010)Google Scholar
  2. 2.
    Babu, H., Islam, M., Chowdhury, A., Chowdhury, S.: Reversible logic synthesis for minimization of full-adder circuit. The Euromicro Symposium on Digital System Design. IEEE, 1–5 (2003)Google Scholar
  3. 3.
    Khlopotine, A., Perkowski, M., Kerntopf, P.: Reversible logic synthesis by iterative compositions. IWLS, 1–5 (2002)Google Scholar
  4. 4.
    Islam, S., Islam, R.: Minimization of reversible adder circuits. Asian Journal of Information Technology. Medwell, 1146–1151 (2005)Google Scholar
  5. 5.
    Bruce, J., Thornton, M., Shivakumaraiah, L., Kokate, P., Li, X.: Efficient adder circuits based on a conservative reversible logic gate. The IEEE Computer Society Annual Symposium on VLSI. IEEE, 1–6 (2002)Google Scholar
  6. 6.
    Moghimi, S., Reshadine, M.: A novel 4 × 4 universal reversible gate as a cost efficient full adder/subtractor in terms of reversible and quantum metrices. I.J. Modern Education and Computer Science, 28–34 (2015)Google Scholar
  7. 7.
    Thersesal, T., Sathish, K., Aswinkumor, R.: A new design of optical reversible adder and subtractor using MZI. International Journal of Scientific and Research Oublications 5(4), 1–6 (2015)Google Scholar
  8. 8.
    Fredkin, H., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219–253 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. IEEE Computer Society Annual Symposium on VLSI. IEEE, 229–234 (2009)Google Scholar
  10. 10.
    Rangaraju, H., Venugopal, U., Muralidhara, K., Raha, K.: Design of efficient reversible parallel binary adder/subtractor. Computer networks and information technologies, vol. 142, pp 83–37. Springer, Berlin (2011)Google Scholar
  11. 11.
    Kamalakannan, V., Shilpakala, V., Ravi, N.: Design of Adder/Subtractor circuits based on reversible gates. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3796–3804 (2013)Google Scholar
  12. 12.
    Montaser, R., Younes, A., Abdel-Aty, M.: New designs of universal reversible gate library. arXiv:1512.08991v1 [cs.ET], 1–17 (2015)
  13. 13.
    Younes, A.: Tight bounds on the Synthesis of 3-bit reversible circuits: N F F r library. Journal of Circuits Systems and Computers 23(3), 1–22 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, G., Song, X., Hung, W.N.N., Perkowski, M.A., Seo, C.-J.: Synthesis of reversible circuits with minimal costs. CALCOLO 45, 193–206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE T. Comput. Aid. D. 22(6), 710–722 (2003)CrossRefGoogle Scholar
  16. 16.
    Maslov, D., Miller, D.M.: Comparison of the cost metrics for reversible and quantum logic synthesis. IET Comput. Digit. Tech. 1(2), 98–104 (2008)CrossRefGoogle Scholar
  17. 17.
    Storme, L., De Vos, A., Jacobs, G.: Group theoretical aspects of reversible logic gates. J. Univ. Comput. Sci. 5(5), 307–321 (1999)zbMATHGoogle Scholar
  18. 18.
    Younes, A.: On the universality of n-bit reversible gate libraries. Appl. Math. Inf. Sci. 9(5), 2579–2588 (2015)MathSciNetGoogle Scholar
  19. 19.
    Montaser, R., Younes, A., Abdel-Aty, M.: Improving the quantum cost of NCT-based reversible circuit. Quant. Inf. Process., Springer 14(2), 325–351 (2013)zbMATHGoogle Scholar
  20. 20.
    Al Mamuni, S., Menville, D.: Quantum cost optimization for reversible sequential circuit. Int. J. Adv. Comput. Sci. Appl. 4(12), 15–21 (2013)Google Scholar
  21. 21.
    Saha, R., Dalal, S.: A novel reversible combinational circuit design for low power computation. In: Communication and Information Technology Conference (PCITC). IEEE, 1–6 (2015)Google Scholar
  22. 22.
    Lakshmi, A., Sudha, G.: Design of a reversible single precision floating point subtractor. Springer Open Journal, v(3), 1–20 (2014)Google Scholar
  23. 23.
    Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. In: 11th IEEE International Conference on Nanotechnology, Portland Marriott, USA, 1430–1435 (2011)Google Scholar
  24. 24.
    Gupta, A., Singla, P., Gupta, J., Maheshwari, N.: An improved structure of reversible adder and subtractor. International Journal of Electronics and Computer Science Engineering 2(2), 712–718 (2013)Google Scholar
  25. 25.
    Hafez, H., Islam, M., Chowdhury, S., Chowshury, A.: Synthesis of full-adder circuit using reversible logic. In: The 17th International Conference on VLSI design, IEEE (2004)Google Scholar
  26. 26.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, vol. 2000, pp 1–59. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  27. 27.
    De Vos, A.: Reversible computing fundamentals. Quantum computing and applications. Wiley-VCH Verlag GmbH and Co.KGaA, 5–82, 131–166, 183–190 (2010)Google Scholar
  28. 28.
    Islam, M.: A novel quantum cost efficient reversible full adder gate in nanotechnology. arXiv:1008.3533 (2010)
  29. 29.
    Morrison, M., Ranganathan, N.: Design of a reversible ALU based on novel programmable reversible logic gate structures. In: 2011 IEEE computer society annual symposium on VLSICoRR. IEEE, pp. 126–131 (2011)Google Scholar
  30. 30.
    Thapliyal, H.: Mapping of subtractor and adder-subtractor circuits on reversible quantum gates. Transaction on Computer Science XXVII. LNCS, vol. 9570, pp. 10–34. Springer, Heidelberg (2016)Google Scholar
  31. 31.
    Monfared, A., haghparast, M.: Design of novel quantum/reversible ternary adder circuits. International Journal of Electronics Letters 5, 1–14 (2016). Taylor and FrancisGoogle Scholar
  32. 32.
    Kianpour, M., Nadooshan, R.: Novel 8-bit reversible full adder/subtractor using a QCA reversible gate. Journal of Computational Electronics 16, 459–472 (2017). SpringerCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.School of Computer ScienceUniversity of BirminghamBirminghamUK
  3. 3.University of Science and TechnologyZewail City of Science and TechnologyZewailEgypt
  4. 4.Department of Mathematics, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations