Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 143–149 | Cite as

Vector Particles Tunneling From a New Class of Dilaton Black Holes

  • Zhong-Wen FengEmail author
Article

Abstract

In this work, we calculate the massive vector particles tunneling from a new class of dilaton spacetimes to study the Hawking temperature of those new black holes. First, by using the Proca equation and WKB approximation, we obtain the wave equations of vector particles. Then, according to the separation of variables technique, we obtain the tunneling rates and Hawking temperatures on the outer event horizons of those new dilaton black holes. The results show that the tunneling rates and Hawking temperatures of the new class of dilaton black holes are depended on the parameter α. When \(\alpha \ne \sqrt 3 \) and 1, the tunneling rate and Hawking temperatures are related to the outer event horizon r+, the coefficients of dilatonic field α and γ, the positive constants b, and the cosmological constant. When \(\alpha = \sqrt 3\), T+ is related to the outer event horizon r+, positive constants b, and the cosmological constant. However, when α = 1, the Hawking temperature is only related to outer event horizon r+, positive constant b, and the cosmological.

Keywords

Hawking temperature Vector particles Dilaton black hole 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11703018) and the Fundamental Research Funds of China West Normal University (Grant Nos. 17E093 and 17YC518).

References

  1. 1.
  2. 2.
  3. 3.
    Hawking, S.W.: Nature 248, 30 (1974).  https://doi.org/10.1038/248030a0 ADSCrossRefGoogle Scholar
  4. 4.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975).  https://doi.org/10.1007/BF02345020 ADSCrossRefGoogle Scholar
  5. 5.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973).  https://doi.org/10.1007/BF01645742 ADSCrossRefGoogle Scholar
  6. 6.
    Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000).  https://doi.org/10.1103/PhysRevLett.85.5042, arXiv:hep-th/9907001 ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kerner, R., Mann, R.B.: Class. Quant. Grav. 25, 095014 (2008). http://iopscience.iop.org/article/10.1088/0264-9381/25/9/095014/meta, arXiv:0710.0612 ADSCrossRefGoogle Scholar
  8. 8.
    Kerner, R., Mann, R.B.: Phys. Lett. B 665, 277 (2008).  https://doi.org/10.1016/j.physletb.2008.06.012. arXiv:0803.2246 ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, D.Y., Yang, H.T., Zu, X.T.: Eur. Phys. J. C. 56, 119 (2008).  https://doi.org/10.1140/epjc/s10052-008-0638-y ADSCrossRefGoogle Scholar
  10. 10.
    Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Phys. Lett. B 666, 269 (2008).  https://doi.org/10.1016/j.physletb.2008.07.017 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Banerjee, R., Majhi, B.R.: Phys. Rev. D 79, 064024 (2009).  https://doi.org/10.1103/PhysRevD.79.064024 ADSCrossRefGoogle Scholar
  12. 12.
    Ding, C.K., Jing, J.L.: Phys. Lett. B 676, 99 (2009).  https://doi.org/10.1016/j.physletb.2009.04.069 ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Feng, Z.W., Zhang, L., Zu, X.T.: Mod. Phys. Lett. A 29, 1450123 (2014).  https://doi.org/10.1142/S0217732314501235 ADSCrossRefGoogle Scholar
  14. 14.
    Li, H.-L., Feng, Z.-W., Zu, X.-T.: Gen. Relativ. Gravit. 48, 18 (2016).  https://doi.org/10.1007/s10714-015-2015-0 ADSCrossRefGoogle Scholar
  15. 15.
    Li, H.-L., Chen, S.-R.: Gen. Relativ. Gravit. 49, 128 (2017).  https://doi.org/10.1007/s10714-017-2296-6 ADSCrossRefGoogle Scholar
  16. 16.
    Feng, Z.W., Li, H.L., Yang, S.Z.: Eur. Phys. J C 76, 212 (2016).  https://doi.org/10.1140/epjc/s10052-016-4057-1 ADSCrossRefGoogle Scholar
  17. 17.
    Kruglov, S.: Mod. Phys. Lett. A 29, 1450203 (2014).  https://doi.org/10.1142/S0217732314502034 ADSCrossRefGoogle Scholar
  18. 18.
    Kruglov, S.: Int. J. Mod. Phys. A 29, 1450118 (2014).  https://doi.org/10.1142/S0217751X14501188 ADSCrossRefGoogle Scholar
  19. 19.
    Feng, Z.W., Chen, Y., Zu, X.T.: Astrophys. Space Sci. 359, 48 (2015).  https://doi.org/10.1007/s10509-015-2498-x ADSCrossRefGoogle Scholar
  20. 20.
    Chen, G.-R., Zhou, S., Huang, Y.-C.: Int. J.Mod. Phys. D 24, 1550005 (2015).  https://doi.org/10.1142/S0218271815500054 ADSCrossRefGoogle Scholar
  21. 21.
    Li, X.-Q., Chen, G.-R.: Phys. Lett. B 751, 34 (2015).  https://doi.org/10.1016/j.physletb.2015.10.007 ADSCrossRefGoogle Scholar
  22. 22.
    Övgün, A., Sakalli, I.: Astrophys. Space Sci. 361, 330 (2016).  https://doi.org/10.1007/s10509-016-2922-x ADSCrossRefGoogle Scholar
  23. 23.
    Javed, W., Abbas, G., Ali, R.: Eur. Phys. J. C 77, 296 (2017).  https://doi.org/10.1140/epjc/s10052-017-4859-9 ADSCrossRefGoogle Scholar
  24. 24.
    Övgün, A., Jusufi, K.: Eur. Phys. J. Plus 132, 298 (2017).  https://doi.org/10.1140/epjp/i2017-11574-9 CrossRefGoogle Scholar
  25. 25.
    Feng, Z.W.: Int. J Theor. Phys. 57, 931 (2018).  https://doi.org/10.1007/s10773-017-3625-y CrossRefGoogle Scholar
  26. 26.
  27. 27.
    Yale, A., Mann, R.B.: Phys. Lett. B 673, 168 (2009).  https://doi.org/10.1016/j.physletb.2009.02.019 ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Physics and Space ScienceChina West Normal UniversityNanchongChina

Personalised recommendations