Skip to main content
Log in

Quantum Parity Gate with Dipole Induced Transparency Effect in the Drop-filter Cavity-waveguide System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a feasible scheme for realizing quantum parity gate with dipole induced transparency (DIT) effect in the drop-filter cavity-waveguide system. The interference effect of dipole-microcavity systems plays the key role in the transmission spectrum, and quantum parity gate of dipole emitters can be realizable just by measuring the output photon in different waveguides. Benefiting from DIT effect, the scheme may work in the bad cavity regime and it is also insensitive to experimental noises and imperfections, which may be feasible with present accessible technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sleator, T., Weinfurter, H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  3. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001)

    Article  ADS  Google Scholar 

  4. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  5. Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables Free-Electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  6. Ionicioiu, R.: Entangling spins by measuring charge: a parity-gate toolbox. Phys. Rev. A 75, 032339 (2007)

    Article  ADS  Google Scholar 

  7. Ionicioiu, R., Popescu, A.E., Munro, W.J., Spiller, T.P.: Generalized parity measurements. Phys. Rev. A 78, 052326 (2008)

    Article  ADS  Google Scholar 

  8. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  9. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  10. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  11. Wang, X.W., Zhang, D.Y., Tang, S.Q., Xie, L.J., Wang, Z.Y., Kuang, L.M.: Photonic two-qubit parity gate with tiny cross-Kerr nonlinearity. Phys. Rev. A 85, 052326 (2012)

    Article  ADS  Google Scholar 

  12. Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)

    Article  ADS  Google Scholar 

  13. Sun, S., Kim, H., Solomon, G.S., Waks, E.: A quantum phase switch between a single solid-state spin and a photon. Nat. Nanotechnol. 11, 539–544 (2016)

    Article  ADS  Google Scholar 

  14. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008)

    Article  ADS  Google Scholar 

  15. Waks, E., Vuckovic, J.: Dipole induced transparency in Drop-Filter Cavity-Waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  16. Faraon, A., Fushman, I., Englund, D., Stoltz, N., Petroff, P., Vuckovic, J.: Dipole induced transparency in waveguide coupled photonic crystal cavities. Opt. Express 16, 12154–12162 (2008)

    Article  ADS  Google Scholar 

  17. Wei, H.R., Deng, F.G.: Robust deterministic quantum computation of quantum-dot spins inside microcavities based on parity-check building blocks. J. Opt. Soc. Am. B 33, 804–809 (2016)

    Article  ADS  Google Scholar 

  18. Zhou, X.P., Su, S.L., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Parity-gate-based quantum information processing in decoherence-free subspace with nitrogen-vacancy centers. Opt. Commun. 352, 140–147 (2015)

    Article  ADS  Google Scholar 

  19. Leuenberger, M.N., Flatte, M.E., Awschalom, D.D.: Teleportation of electronic Many-Qubit states encoded in the electron spin of quantum dots via single photons. Phys. Rev. Lett. 94, 107401 (2005)

    Article  ADS  Google Scholar 

  20. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  21. Thompson, R.J., Rempe, G., Kimble, H.J.: Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 68, 1132–1135 (1992)

    Article  ADS  Google Scholar 

  22. Walls, D.F., Milburn, G.J.: Quantum optics, 2nd edn. Springer, New York (2008)

    Book  MATH  Google Scholar 

  23. Purcell, E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  24. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  25. Peng, Z.H., Zou, J., Liu, X.J., Kuang, L.M.: Optimal entanglement concentration via photonic Faraday rotation in cavity QED. Opt. Commun. 313, 365–368 (2014)

    Article  ADS  Google Scholar 

  26. Rokhsari, H., Vahala, K.J.: Ultralow loss, high q, four port resonant couplers for quantum optics and photonics. Phys. Rev. Lett. 92, 253905 (2004)

    Article  ADS  Google Scholar 

  27. Liu, Y.C., Xiao, Y.F., Li, B.B., Jiang, X.F., Li, Y., Gong, Q.: Coupling of a single diamond nanocrystal to a Whispering-Gallery microcavity: photon transportation benefitting from rayleigh scattering. Phys. Rev. A 84(R), 011805 (2011)

    Article  ADS  Google Scholar 

  28. Hijlkema, M., Weber, B., Specht, H.P., Webster, S.C., Kuhn, A., Rempe, G.: A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Z. H. Peng, C. X. Jia and X. J. Liu were supported by the National Science Foundation of China (NSFC) under Grants No. 11405052 and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control under Grants No. QSQC1409. Y. Q. Zhang and Z. H. Zhu were supported by NSFC under Grants Nos. 11504104 and 11704115.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, ZH., Jia, CX., Zhang, YQ. et al. Quantum Parity Gate with Dipole Induced Transparency Effect in the Drop-filter Cavity-waveguide System. Int J Theor Phys 57, 3163–3171 (2018). https://doi.org/10.1007/s10773-018-3834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3834-z

Keywords

Navigation