Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 9, pp 2904–2919 | Cite as

Quantum Image Compression-Encryption Scheme Based on Quantum Discrete Cosine Transform

  • Xiao-Zhen Li
  • Wei-Wei Chen
  • Yun-Qian Wang
Article

Abstract

To obtain higher encryption efficiency and to realize the compression of quantum image, a quantum gray image encryption-compression scheme is designed based on quantum cosine transform and 5-dimensional hyperchaotic system. The original image is compressed by the quantum cosine transform and Zigzag scan coding, and then the compressed image is encrypted by the 5-dimensional hyperchaotic system. The proposed quantum image encryption-compression algorithm has larger key space and higher security, since the employed 5-dimensional hyperchaotic system has more complex dynamic behavior, better randomness and unpredictability than the low-dimensional hyper-chaotic system. Simulation and theoretical analyses show that the proposed quantum image encryption-compression scheme is superior to the corresponding classical image encryption scheme in term of efficiency and security.

Keywords

5D hyper-chaotic system Zigzag scan coding Quantum discrete cosine transform Quantum image compression Quantum image encryption 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061) and the Natural Science Foundation of Jiangxi Province (Grant No. 20151BAB207002).

References

  1. 1.
    Lewis, A.S., Knowles, G.: Image compression using the 2-D wavelet transforms. IEEE Trans. Image Process. 1(2), 244–250 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    Ponomarenko, N., Lukin, V., Egiazarian, K., et al.: DCT based high quality image compression. Image Analysis, Scandinavian Conference, SCIA 2005, Joensuu, Finland, vol. 3540, pp. 1177–1185 (2005)Google Scholar
  3. 3.
    Kouda, N., Matsui, N., Nishimura, H.: Image compression by layered quantum neural networks. Neural. Process. Lett. 16(1), 67–80 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Yang, R., Zuo, Y.J., Lei, W.J.: Researching of image compression based on quantum BP network. Telkomnika Indonesian J. Elect. Eng. 11(11), 6889–6896 (2013)Google Scholar
  5. 5.
    Yuen, C.H., Wong, K.W.: A chaos-based joint image compression and encryption scheme using DCT and SHA-1. Appl. Soft Comput. 11(8), 5092–5098 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhou, N.R., Pan, S.M., Cheng, S.: Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser Technol. 82, 121–133 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Gong, L.H., Deng, C.Z., Pan, S.M., et al.: Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Opt. Laser Technol. 103, 48–58 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Gong, L.H., Liu, X.B., Zheng, F., Zhou, N.R.: Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique. J. Mod. Opt. 60(13), 1074–1082 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Zhou, N.R., Li, H.L., Wang, D., Pan, S.M., Zhou, Z.H.: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt. Commun. 343, 10–21 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Klappenecker, A., Rotteler, M.: Discrete cosine transforms on quantum computers. IEEE Int. Symposium Image Signal Process. Analysis 11(1), 464–468 (2001)Google Scholar
  11. 11.
    Tseng, C.C., Hwang, T.M.: Quantum circuit design of 88 discrete cosine transform using its fast computation flow graph. Proc. IEEE Int. Symp. Circuits Syst. 1(2), 828–831 (2005)Google Scholar
  12. 12.
    Jozsa, R.: Quantum algorithms and the Fourier transform. Proc. Math. Phys. Eng. Sci. 454(1969), 323–337 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., et al.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86(9), 1889–91 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Labunets, V., Labunets-Rundblad, E., Egiazarian, K., et al.: Fast classical and quantum fractional Walsh transforms. Int. Symposium Image Signal Process. Anal. 10, 558–563 (2001)zbMATHGoogle Scholar
  15. 15.
    Fijany, A., Williams, C.P.: Quantum wavelet transforms: fast algorithms and complete circuits. Lect. Notes Comput. Sci 1509, 10–33 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transforms. Quantum Inf. Process. 12(12), 3689–3706 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process 12 (11), 3477–3493 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Pang, C.Y., Zhou, Z.W., Guo, G.C.: Quantum discrete cosine transform for image compression. Physics 10(08), 42–43 (2006)Google Scholar
  19. 19.
    Jiang, N., Lu, X.W., Hu, H., et al.: A Novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 57(3), 611–636 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Yuan, S.Z., Mao, X., Xue, Y.L., Chen, L.J., Xiong, Q.X., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum. Inf. Process. 13 (6), 1353–1379 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Li, H.S., Zhu, Q., Zhou, R.G., et al.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inform. Sci. 273 (3), 212–232 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhou, N.R., Hu, Y.Q., Gong, L.H., Li, G.Y.: Quantum image encryption scheme with iterative generalized Arnold transform and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhang, Y., Lu, K., Gao, Y.H., et al.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process 12(8), 2833–2860 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Vaidyanathan, S., Volos, C., Pham, V.T.: Hyper-chaos, adaptive control and synchronization of a novel 5D hyper-chaotic system with three positive Lyapunov exponents and its SPICE implementation. Archives Control Sci. 24(4), 409–446 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Xu, X.L., Feng, J.L.: Research and implementation of image encryption algorithm based on Zigzag transformation and inner product polarization vector. IEEE International Conference on Granular Computing. IEEE Comput. Soc. 95(1), 556–561 (2010)Google Scholar
  27. 27.
    Ralph, T.C., Resch, K.J., Gilchrist, A.: Efficient Toffoli gates using qudits. Phys. Rev. A 75(2), 441–445 (2008)Google Scholar
  28. 28.
    Liu, Z.J., Xu, L., Liu, T., et al.: Color image encryption by using Arnold transform and color-blend operation in discrete cosine transform domains. Opt. Commun. 284(1), 123–128 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information EngineeringNanchang UniversityNanchangChina

Personalised recommendations